
What Follows

A Logic and Philosophy Text

Russell Marcus

Department of Philosophy

Hamilton College

198 College Hill Road

Clinton NY 13323

rmarcus1@hamilton.edu

(315) 859-4056 (office)

(315) 381-3125 (home)

January 5, 2012

The question of logic is: Does the conclusion certainly follow if the premises be true?

- Augustus De Morgan

Table of Contents

Preface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

§1: Defining ‘Logic’. . . . . . . . . . . . . . . . . . . . . . 1

§2: A Short History of Logic. . . . . . . . . . . . . . . . 5

Chapter 1: Syntax and Semantics for PL. . . . . . . . . . . . . . 8

§1.1. Separating Premises from Conclusions. . . . 8

§1.2: Validity and Soundness.. . . . . . . . . . . . . . 16

§1.3: Logical Connectives and Translation. . . . 20

§1.4. Syntax of PL: Wffs and Main Operators. 27

§1.5. Truth Functions. . . . . . . . . . . . . . . . . . . . . 31

§1.6. Truth Tables for Propositions. . . . . . . . . . 40

§1.7. Valid and Invalid Arguments. . . . . . . . . . 50

§1.8. Indirect Truth Tables. . . . . . . . . . . . . . . . 53

Chapter 2: Inference in Propositional Logic.. . . . . . . . . . 62

§1: Rules of Inference 1. . . . . . . . . . . . . . . . . . . 62

§2.2: Rules of Inference 2. . . . . . . . . . . . . . . . . 68

§2.3: Rules of Equivalence 1. . . . . . . . . . . . . . . 72

§2.4: Rules of Equivalence 2. . . . . . . . . . . . . . . 78

§2.5: Conditional Proof. . . . . . . . . . . . . . . . . . . 85

§2.6: Logical Truths. . . . . . . . . . . . . . . . . . . . . . 91

§2.7: Indirect Proof. . . . . . . . . . . . . . . . . . . . . . 95

Appendix: Proofs of the Eight Rules of Equivalence

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Chapter 3: Predicate Logic. . . . . . . . . . . . . . . . . . . . . . . 106

§3.1: Translation. . . . . . . . . . . . . . . . . . . . . . . 106

§3.2: A Family of Predicate Logics. . . . . . . . . 113

§3.3: Derivations in M . . . . . . . . . . . . . . . . . . . 118

§3.4: Quantifier Exchange. . . . . . . . . . . . . . . . 127

§3.5: Conditional and Indirect Proof in M . . . . 132

§3.6: Semantics for Predicate Logic. . . . . . . . 137

§3.7: Invalidity in Predicate Logic. . . . . 142

§3.8: Translation Using Relational

Predicates.. . . . . . . . . . . . . . . . 150

§3.9: Rules of Passage. . . . . . . . . . . . . . 158

§3.10: Derivations in F. . . . . . . . . . . . . 168

§3.11: The Identity Predicate: Translation.176

§3.12: The Identity Predicate: Derivations.188

§3.13: Functions.. . . . . . . . . . . . . . . . . . 196

§3.14: Higher-Order Quantification. . . . 206

Chapter 4: Logic and Philosophy. . . . . . . . . . . . . 210

§1: The Laws of Logic and their Bearers.210

§2: Disjunction, Unless, and the Sixteen

Truth Tables.. . . . . . . . . . . . . . 214

§3: Conditionals. . . . . . . . . . . . . . . . . . . 219

§4: Syntax, Semantics, and the Chinese

Room. . . . . . . . . . . . . . . . . . . . 230

§5: Adequacy. . . . . . . . . . . . . . . . . . . . . 237

§6: Three-Valued Logics. . . . . . . . . . . . 247

§7: Truth and Liars.. . . . . . . . . . . . . . . . 262

§8: Quantification and Ontology. . . . . . 272

§9: Color Incompatibility. . . . . . . . . . . . 280

§10: Second-Order Logic and Set Theory.291

Bibliography.. . . . . . . . . . . . . . . . . . . . . . . . . . . . 299

Summary of Rules and Terms. . . . . . . . . . . . . . . 303

Solutions to Exercises. . . . . . . . . . . . . . . . . . . . . 307

Chapter 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307

Chapter 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335

Chapter 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371

mailto:rmarcus1@hamilton.edu


-ii-

Acknowledgments

This book is the product of both an unease I have felt growing slowly over many years of

teaching logic in philosophy departments as well as a sudden decision to ignore prudence.  My unease

derived from the ways in which even excellent students finished my Logic course without a good

understanding of why philosophers studied the topic.  I wanted to find ways to show my students some of

the connections between formal deductive logic and broader philosophical topics.  Coming to Hamilton

College, I began teaching Philosophy Fridays in Logic, putting aside the technical material on truth tables

and derivations and talking about non-standard topics, ones which appeared in only cursory fashion, if at

all, in the standard textbooks.  Every other Friday, I would assign a philosophy reading relating to the

course material and spend a class talking about how logic and philosophy connect: Goodman’s The

Problem of Counterfactual Conditionals; a selection from Aristotle’s De Interpretatione; Quine’s “On

What There Is;” Searle’s, “Can Computers Think?”  Each student wrote a short paper on some topic

raised in a Philosophy Friday.

Students responded well to Philosophy Fridays, but the readings I assigned were often too

difficult.  As in many departments, Logic at Hamilton attracts students from departments across the

college.  Most of these students were too unfamiliar with philosophy to work comfortably with the

material I found most interesting.  I received many fine papers and was convinced that my students were

leaving the course with a greater awareness of why we philosophers study logic.  But, unfortunate

numbers of students let me know that they were not enjoying the readings.

My sudden decision to ignore prudence happened during a logic class, Fall 2010, when I

mentioned, for a reason I still don’t fully understand, that if anyone wanted to spend time writing logic

problems for a summer, I would try to find some funding for the project.  Then, I would put together my

scattered notes and write the textbook of which I dreamed: lots of logic problems paired with a text on the

connections between logic and philosophy which is accessible to students with little or no philosophy

background.  I suppose that, contrary to the evidence of my conscious thoughts, deep inside I don’t much

like summer vacations.  Jess Gutfleish volunteered for the problem-writing task, and the Dean of

Faculty’s Office at Hamilton College agreed to fund her work, with a Class of 1966 Faculty Development

Award.

In the summer of 2011, Jess and I worked side-by-side in the archaeology teaching lab at

Hamilton producing What Follows for use the following fall.  I wrote the text and she worked amazingly,

assiduously, and indefatigably writing the exercises.  I had difficulty keeping up with her.

I am ineffably grateful to Jess for all of her hard work and the mountain of insidiously difficult

(as well as more ordinary) logic problems she devised.  Thank you to Margaret Gentry and the Dean of

Faculty’s office at Hamilton for their support through the Class of 1966 Grant.  I am grateful to the

Nathan Goodale and Tom Jones for letting us have their lab in which to work.  I also owe thanks to the

many students who have helped me construct an innovative Logic course.  Most importantly, I am

grateful to my wife, Emily, and my children, Marina and Izzy, who suffered through a summer that was

less fun than it could have been for them so that I could write the logic book I wanted to use.



Marcus, What Follows, page 1

Preface

§1: Defining ‘Logic’

What Follows is a textbook in formal deductive logic and its relation to philosophy.  Its focus is a

definition of logical consequence for a variety of formal languages.  In the book, we examine, regiment,

evaluate, and derive conclusions for arguments.

Let’s start by trying to characterize what the terms ‘logic’ and ‘argument’ refer to.  Consider the

following claims which someone might use to define those terms.

LA Logic is the study of argument.

Arguments are what people who study logic study.

Two aspects of the pair of sentences LA are worth noticing.  First, they provide a circular

definition which makes the characterizations nearly useless.  If you do not understand the terms logic’ and

‘argument’, then the sentences in LA are not going to help you, except for showing that the two terms are

related.

Second, the circularity of this pair of definitions is a formal result.  It can be applied to any of

various other purported definitions.  The formal property of circularity can be instantiated in many

different contexts, using sentences with many different contents, like the pair of sentences at SS or GW.

SS Sheep are the things that shepherds tend.

Shepherds are things that tend sheep.

GW Glubs are extreme cases of woozles.

Woozles are ordinary forms of glubs.

In the cases of LA and SS, you might not notice the problem of the formal property of circularity. 

In GW, the problem is obvious.  Without knowing what glubs and woozles are, GW is useless, and its

uselessness is a product of its poor form.  This textbook is about such formal results.

In contrast to LA, LB is not formally circular. 

LB Logic is the study of argument.

An argument is a set of statements, called premises, intended to establish a

specific claim, called the conclusion.

LB explains the meaning of one term, ‘logic’, by using other ones.  If such a definition is to be

informative, these other terms should be more familiar.  If not, we can continue the process.

CP To establish a claim is to justify or provide evidence for it.

A ‘proposition’, or a ‘statement’, is a declarative sentence that has a truth value.

The truth values are true and false.  (In this text we will mainly focus on just two

truth values, though there are logics with more.  Some interesting logics

have three, or infinitely many.)

Pairing LB and CP, we see a characterization of logic as the rules of what follows from what, of

which consequences derive from which assumptions.  We make inferences all the time: if I buy this book,

I won’t have enough money for the cup of coffee I wanted; if I make a turn here, I’ll end up in Waterville;

she must be angry with me because she hasn’t returned my email yet.  When we think about the

consequences of our actions or the reasons some event has occurred, we are using logic.  Good logic is
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thus a precondition for all good reasoning.

When evaluating an argument, we perform two steps.  First, we see whether the argument follows

from the premises.  An argument whose conclusion follows, formally, from its premises is called valid. 

Chapter 1 is dedicated to constructing a precise notion of validity, of what follows, for propositional

logic.  Indeed, the notion of validity is the central topic of the book.

Our second step in evaluating an argument is to see whether the premises are true.  In a valid

deductive argument, if the premises are true, then the conclusion is necessarily true.  This result is what

makes deductive logic important.

This textbook is dedicated to the first step in the process of evaluating arguments.  The second

step is not logical, but scientific.  Roughly speaking, we examine our logic to see if our reasoning is

acceptable.  We examine the world to see if our premises are true.  While we prefer our arguments both to

be valid and to have true premises, this book is mainly dedicated to the form of the argument, not to its

content.

You might wonder whether the logic in this book, formal deductive logic, is descriptive,

representing how we actually reason, or prescriptive, setting out rules for proper reasoning.  Before we

can start to answer this question, we have to see what our logic looks like.  The nature of some elementary

systems of formal logic is the focus of the first three chapters of this book.  In the fourth and last chapter,

I discuss a variety of philosophical questions arising from or informed by the study of formal logic.  I

intend the sections of Chapter 4 to be read along with the formal material in the first three chapters.  Each

section of Chapter 4 presupposes the understanding of a different amount of formal work and I provide a

guide showing when the different sections of Chapter 4 are appropriate to read.

Logic and Languages

There are (at least) three kinds of languages in this book.  First, there is the natural language,

English, in which most of the book is written.  Other natural languages include Spanish and Swahili. 

Second, there are the formal languages which are the main focus of the first three chapters.  I will specify

the formal languages precisely.

Between formal and natural languages is a third kind of language made of elements of the first

two and used to study a formal language.  This metalanguage is mostly English.  You might not even

think of it as a language separate from English, and for the most part you need not think about the

metalanguage too carefully.  But it includes some technical terms not in ordinary English.  For example,

the rules of inference we will examine in Chapter 2 are not really in English; they are written using Greek

letters.  They are parts of the metalanguage we use to tell us how to work in the object language.  We can

add these same meta-linguistic rules to any natural language to form a metalanguage.  Our metalanguage

thus differs from any particular natural language.  I will not specify the metalanguage as precisely as the

object languages.

It is customary to give names to object languages.  Chapters 1 and 2 focus on one object language

which I will call PL, for propositional logic.  Chapter 3 discusses four further formal languages:

M Monadic (First-Order) Predicate logic

F Full (First-Order) Predicate logic

FF Full (First-Order) Predicate logic with Functors

S Second-Order Predicate logic

In addition to naming each language, I specify formation rules for formulas of the language.  I

also introduce deductive systems using each language.  A deductive system may use more than one

language and a language may use more than one deductive system.

A formal object language may be seen as a meaningless tool.  In order to apply this tool to actual
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arguments and inferences, we have to interpret the symbols of the language.  No language can determine

its own interpretation.  So we specify interpretations of object languages by stepping outside of those

languages and into metalanguages.

Many students, when they begin to study logic, find it to be like an amusing toy.  There are rules

for working in the object language, and once you learn those rules, it can be fun to play with them.  When

I started studying logic, in college, I couldn’t believe that one could earn credit for filling out truth tables,

translating English into formal languages, and constructing derivations.  To me, a person who loves

puzzles and games, and who has a very modest capacity for mathematics, logic was too much fun to be

serious or important.

But to many students, especially many philosophy students, logic seems too abstract and

mathematical.  We study philosophy because we want to think about metaphysics or morality or truth or

beauty.  Logic prides itself on its lack of content.  Moreover, there are rules in logic which can be

violated.  You can get problems wrong.  The solutions to problems are not always obvious.

My advice to students who have difficulty with the computational or mathematical portions of the

text is to practice.  Do a lot of problems and try to focus on the importance of the tasks at hand.  Most

importantly, make sure to think about some of the topics in Chapter 4.  That chapter is precisely my

attempt to make the formal work more interesting and engaging for everyone.

Deduction, Induction, and Ordinary Reasoning

A central question about the logic in this book concerns its relation to ordinary human reasoning. 

This book focuses on deductive logic.  Much of human reasoning is inductive.  Deductions are necessary

entailments; in a deductive argument, the conclusion follows necessarily from the premises.  Inductions

are often probabilistic, attempts to gather a variety of evidence into simple, general claims.  Perhaps the

difference between deduction and induction is best seen by paradigms.  DI is a deductive inference; II is

an inductive inference.

DI Polar bears are carnivorous.

Polar bears are mammals.

So, some mammals are carnivorous.

II 47 percent of Americans in a recent poll approve of the way the Supreme Court

does its job.

There were 1003 adults polled.

The margin of error for this poll is ±3 percent.

So, between 44 and 50 percent of Americans approve of the way the Court does

its work.

Notice that the conclusion of DI is almost disappointing in its obviousness.  One you have seen

the premises of a deductive argument, the conclusion is rarely surprising.  A natural response to the third

sentence in DI is, “Yes, you said that already.”

In contrast, inductive conclusions can be both surprising and contentious.  II is not particularly

surprising, but inductive inferences often are, as when a scientist discovers a natural law, or a statistician

notices a significant result.

Like ordinary reasoning, much of scientific reasoning is inductive.  Indeed, when people say that

a conclusion is logical, they often mean that it is well-supported by evidence, not that the conclusion

follows necessarily from the premises.

The relation between ordinary reasoning and deductive logic is a topic for debate.  Some people,

especially some of those who developed modern formal logic over the last 150 years, believe that
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deductive logic is a normative theory of all serious inference: deductive logic provides the rules that we

all must follow to make sure that our inferences are legitimate.  Others people believe that deductive logic

is mainly uninteresting due to its obviousness.  Of course, if you pile enough obvious inferences on top of

each other, you get some non-obvious arguments.  In this book, you will encounter many such arguments. 

But, we don’t find many complex deductive arguments in our ordinary lives.

The rules of deductive logic are clearly applicable in mathematics and computer science.  They

may be necessary conditions for all good inferences.  But, outside of mathematics, deduction is not

sufficient for all our inferences.  We make probabilistic judgments constantly.  We make observations. 

We use induction and abduction.  We discover facts about the world.  Deductive logic may help us

organize and frame what we learn, but it does not suffice to account for all of our ordinary reasoning.

So this book has a narrow scope.  It is not concerned with the truth of premises.  It does not treat

the likelihood of inductive inferences.  It is a book about deductive consequence.  The key ideas of the

formal logic at the core of this book were developed in the late nineteenth century.  But, logic is a much

older discipline.  Before starting our formal work, let’s look briefly at the history of the discipline and

how the contemporary notion of logical consequence was developed.
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§2: A Short History of Logic

Aristotle, who lived in the fourth century B.C.E., famously described some fundamental logical

rules, called categorical syllogisms.  The categorical syllogisms described relations among four kinds of

statements, known since the early middle-ages as A, E, I, and O.

A All Fs are Gs.

E No Fs are Gs.

I Some Fs are Gs.

O Some Fs are not Gs.

In categorical logic, the fundamental elements are terms, portions of assertions.  We will look at

the modern version of term logic, called predicate or quantificational logic, in Chapter 3.

In the third century B.C.E., the stoic philosopher Chrysippus developed a propositional logic, in

which the fundamental elements are complete assertions rather than terms.  Some complete assertions are

simple, others are complex.  Complex assertions are composed of simple assertions combined according

to logical rules.  In Chapters 1 and 2, we will look at the rules of propositional logic.

Through the middle ages, while there were some major advances in logic, the structure of the

discipline was generally stable.  After the scientific revolution, philosophers started paying more attention

to human psychological capacities.  This focus, which we can see in Descartes, Locke, and Hume

culminated in the late-eighteenth century work of Kant, and the early nineteenth-century work of Hegel. 

Kant’s logic was essentially a description of how human beings create their experiences by imposing, a

priori, conceptual categories on an unstructured manifold given in sensation.  The term ‘a priori’

indicates that Kant believed that some of our intellectual activity is prior to, or independent of,

experience.  Logic, for Kant, was the description of human psychology, instead of objective rules of

consequence.  Moreover, according to Kant, logic, as a discipline, was complete.

We shall be rendering a service to reason should we succeed in discovering the path upon which

it can securely travel, even if, as a result of so doing, much that is comprised in our original aims,

adopted without reflection, may have to be abandoned as fruitless.  That logic has already, from

the earliest times, proceeded upon this sure path is evidenced by the fact that since Aristotle it has

not required to retrace a single step, unless, indeed, we care to count as improvements the

removal of certain needless subtleties or the clearer exposition of its recognised teaching, features

which concern the elegance rather than the certainty of the science. It is remarkable also that to

the present day this logic has not been able to advance a single step, and is thus to all appearance

a closed and completed body of doctrine (Kant, Critique of Pure Reason B17). 

In the nineteenth century, several developments led mathematicians to worry about logical

entailments and to call Kant’s claims about logic, its completeness and its psychological status, into

question.  Since these mathematical worries led directly to the logic in this book, I will take a short detour

to discuss two of them: the problem of infinity and non-Euclidean geometries.

For nearly two hundred years, mathematicians had worked with the calculus of Newton and

Leibniz.  The calculus allowed mathematicians to find the area under a curve by dividing the area into

infinitely many infinitely small areas.  Working with infinity, both small and large, seemed problematic,

even if the resulting calculations were successful.  An infinitely small region seemed to be

indistinguishable from an empty region.  An empty region has zero size.  The sum of the sizes of any

number of empty regions should still be zero.  To make matters worse, Cantor, in the mid-nineteenth

century discovered a mathematical proof that there are different sizes of infinity, indeed there are

infinitely many difference sizes of infinity.  Infinite size had long been identified with God, one of the
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divine properties in contrast to our human finitude.  Cantor’s proof struck many mathematicians as

absurd, even heretical, but they could not find a flaw in his logic.

Developments in geometry raised similar worries about mathematical inferences.  Consider the

first four axioms, or postulates, of Euclidean geometry.

E1 Between any two points, one can draw a straight line.

E2 Any straight line segment can be extended indefinitely, to form a straight line.

E3 Given any straight line segment, a circle can be drawn having the segment as

radius and one endpoint as center.

E4 All right angles are congruent.

Euclid relied on a commonsense interpretation of the terms in these axioms, especially terms for

concepts like ‘straight’ and ‘right angle’.  Given those ordinary concepts, it seemed obvious that the

parallel postulate, Euclid’s fifth postulate, would also hold.

E5 If a straight line falling on two straight lines makes the interior angles on the

same side less than two right angles, the two straight lines, if produced

indefinitely, meet on that side on which are the angles less than the two

right angles.

E5 is equivalent to Playfair’s postulate, PP, which is easier to visualize for some people.

PP Given a line, and a point not on that line, there exists a single line which passes

through the point and is parallel to the given line.

In the two millennia between Euclid and the early nineteenth century, geometers tried in vain to

prove E5 or PP.  They mainly did so by trying to find that some contradiction would arise from the

denials of one or the other.  They supposed that there were more than one parallel line through the given

point.  They supposed that there were no parallel lines through the given point.  Both suppositions led to

odd kinds of spaces.  But, neither supposition led to an outright contradiction.

By the early nineteenth century, some mathematicians realized that instead of leading to

contradiction, the denials of E5 and PP lead to more abstract conceptions of geometry, and fecund new

fields of study.  Riemann and others explored the properties of elliptical geometries, those which arise

when adding the claim that there are no parallel lines through the given point in PP to E1-E4. 

Lobachevsky, Gauss, and others explored the properties of hyperbolic geometries, which arise when

adding the claim that there are infinitely many parallel lines through the given point in PP to E1-E4.  In

both elliptical and hyperbolic geometries, the notions of straightness and right-angularity, among others,

have to be adjusted.  Our original Euclidean conceptions had been smuggled in to the study of geometry

for millennia, preventing mathematicians from discovering important geometric theories.

These geometric theories eventually found important applications in physical science.  E5 and PP

are equivalent to the claim that the sum of the angles of a triangle is 180E.  Consider an interstellar

triangle, formed by the light rays of three stars, whose vertices are the centers of those stars.  The sum of

the angles of our interstellar triangle will be less than 180E due to the curvatures of space-time

corresponding to the gravitational pull of the stars and other large objects.  Space-time is not Euclidean,

but hyperbolic.

As in the case of Cantor’s work with infinity, mathematicians considering the counter-intuitive

results of non-Euclidean geometries worried that the laws of logical consequence were being flouted. 

Mathematicians and philosophers began to think more carefully about the notion of logical consequence.

In the late nineteenth century, Gottlob Frege argued that hidden premises, like the assumptions
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that there is only one size of infinity or that all space must conform to E5, had undermined mathematical

progress.  Frege wanted to make sure that all branches of mathematics, indeed all of human reasoning,

was not liable to similar problems.  He thus formalized the study of logical consequence, turning logic

into a mathematical subject.  In 1879, Frege published Begriffsschrift, or Concept-Writing, a

mathematical logical calculus which subsumed both the term logic of Aristotle and the propositional logic

of the stoics.  Frege’s logic extended and refined the rules of logic, generalizing results.

The preface to Frege’s Begriffsschrift makes his motivation clear.

So that nothing intuitive could intrude [into our concept of logical consequence] unnoticed,

everything had to depend on the chain of inference being free of gaps.  In striving to fulfil this

requirement in the strictest way, I found an obstacle in the inadequacy of language: however

cumbersome the expressions that arose, the more complicated the relations became, the less the

precision was attained that my purpose demanded...The present Begriffsschrift...is intended to

serve primarily to test in the most reliable way the validity of a chain of inference and to reveal

every presupposition that tends to slip in unnoticed, so that its origin can be investigated (Frege,

Begriffsschrift).

In this book, by separating the syntax of logic, its formation and derivation rules, from its

semantics, its interpretations and our ascriptions of truth and falsity, we are attempting to fulfil Frege’s

dream of a secure theory of logical consequence.

Frege’s work, while not immediately recognized as revolutionary, became the foundation for fifty

years of intense research in the logical foundations of mathematics and reasoning generally.  The

culmination of this flurry of research came in the early 1930s with Alfred Tarski’s work on truth and Kurt

Gödel’s incompleteness theorems.  Frege’s logic, in a neater and more perspicuous form, is mainly the

focus of this textbook.

The brief history I just sketched is of course, in its brevity, highly misleading.  Many others

contributed to the history of logic, especially in the late middle ages.  Frege was not the only logician to

develop modern logic.  Charles Sanders Peirce, for example, independently developed much of what

made Frege’s logic innovative, his work extending and generalizing Aristotle’s categorical logic to

include relations.  Augustus De Morgan, even earlier than Peirce and Frege, had worked on relational

logic.  But, Frege’s larger project, logicism in the philosophy of mathematics, which I discuss in Chapter

4.10, coming largely as a response to Kant’s philosophy and that of the early-nineteenth-century idealists,

is especially interesting to contemporary philosophers.  Indeed, Frege produced seminal work not only in

logic and philosophy of mathematics, but in philosophy of language, epistemology, and metaphysics.

But enough about history.  Let’s get started with the good stuff.
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Chapter 1: Syntax and Semantics for Propositional Logic

§1.1. Separating Premises from Conclusions

The subject of this chapter is the syntax and semantics of propositional logic.  Propositional logic

is the logic of propositions and their inferential relations.  To study propositional logic, we will construct

and interpret a language which I will call PL.  To construct the language, we will specify its syntax.  To

interpret the language, we will specify its semantics.  

Given that our central goal is a better understanding of logical consequence, of what follows from

what, our first task must be to look at the ways in which deductive inferences are structured.  Compare a

disorganized heap of stones with the same pile of stones arranged into the form of a house.  The stones

are the same.  The difference between the two collections is the organizational structure of the latter

collection.  We want to examine the organizational structure of our inferences.

The basic medium for inference is called an argument.  Arguments are sets of propositions used

to establish (or derive) one particular claim, the conclusion of the argument.  The support for the

conclusion, the reasons presented for holding that claim, are called premises.  Our first task, then, is to

analyze arguments, indicating their structures and separating premises from conclusions.  When we

analyze an argument, we regiment it to reveal its essential structure.

Here is an argument:

1.1.1 We may conclude that texting while driving is wrong.  This may be inferred from the fact

that texting is distracting.  And driving while distracted is wrong.

The conclusion of this argument is that texting while driving is wrong.  The premises are that

texting is distracting and that driving while distracted is wrong.  In addition to the words used to make

those claims, in the original argument, there are premise and conclusion indicators.  ‘We may conclude

that’ is used to indicate a conclusion.  ‘This may be inferred from the fact that’ is used to indicate a

premise.  ‘And’ is also used to indicate a premise.  When we regiment an argument, we eliminate those

indicators.

Here are some premise and conclusion indicators:

Premise Indicators Conclusion Indicators

since

because

for

in that

may be inferred from

given that

seeing that

for the reason that

inasmuch as

owing to

therefore

we may conclude that

we may infer that

entails that

hence

thus

consequently

so

it follows that

implies that

as a result

While these lists are handy, they should not be taken as categorical.  Natural languages like

English are inexact and non-formulaic.  ‘And’ often indicates the presence of an additional premise, but

can also be used to indicate the extension of a conclusion.  Not all sentences in an argument will contain

indicators.  Often you will have to judge from the content of an argument which propositions are premises
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and which are conclusions.  The best way to determine premises and conclusions is to determine what the

main point of an argument is and then look to see what supports that point.

We can regiment 1.1.1. as the perspicuous 1.1.2, eliminating premise and conclusion indicators,

and placing the conclusion at the end.  

1.1.2 P1. Texting is distracting.

P2. Driving while distracted is wrong.

C. Texting while driving is wrong.  

When regimenting an argument, the order of premises is unimportant.  1.1.3 would be just as

good a regimentation as 1.1.2.

1.1.3 P1. Driving while distracted is wrong.

P2. Texting is distracting.

C. Texting while driving is wrong.  

Similarly, the number of premises is not very important.  You can combine or separate premises,

though it is often useful to keep the premises as simple as possible.  1.1.4 is logically acceptable, but not

as perspicuous as 1.1.2 or 1.1.3.

1.1.4 P1. Driving while distracted is wrong and texting is distracting.

C. Texting while driving is wrong.  

The most important task when first analyzing an argument is to determine its conclusion.  The

most serious mistake you can make in this exercise is to confuse premises and conclusions.  Argument

1.1.5 is derived from Leibniz’s work.

1.1.5 God is the creator of the world.  If this world is not the best of all possible worlds, then

either God is not powerful enough to bring about a better world or God did not wish this

world to be the best.  But God is both omnipotent and all-good.  So, this world is the best

of all possible worlds.

The central claim of 1.1.5 is that this is the best of all possible worlds.  The ‘so’ at the beginning

of the last sentence is a hint to the conclusion.  Thinking about the content of the argument should

produce the same analysis.  

1.1.6 is an unacceptable regimentation of 1.1.5 because it switches a premise and the conclusion. 

The proper regimentation would switch P3 and C.  

1.1.6 P1. God is the creator of the world.  

P2. If this world is not the best of all possible worlds, then either God is not powerful

enough to bring about a better world or God did not wish this world to be the

best.  

P3.This world is the best of all possible worlds.

C. God is both omnipotent and all-good.

Sometimes it is not easy to determine how to separate premises from conclusions.  Often, such

discrimination requires broad context.

Another difficulty arises from single sentences which contain both a premise and a conclusion. 

Such compound sentences must be divided.  1.1.7 is derived from Locke’s work.
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1.1.7 Words must refer either to my ideas or to something outside my mind.  Since my ideas

precede my communication, words must refer to my ideas before they could refer to

anything else.

A good regimentation of 1.1.7 divides the last sentence, as in 1.1.8.

1.1.8 P1. Words must refer either to my ideas or to something outside my mind.  

P2. My ideas precede my communication.

C. Words must refer to my ideas before they could refer to anything else.

Some arguments contain irrelevant, extraneous information.  When constructing an argument, it

is better to avoid extraneous claims.  Such claims can weaken or even invalidate an argument.  When

regimenting someone else’s argument, it is usually good practice to include all claims, even extraneous

ones.  Then, when you are evaluating an argument, you can distinguish the important premises from the

extraneous ones. 

Lastly, some arguments contain implicit claims not stated in the premises.  These arguments are

called enthymemes.  1.1.9 is enthymemic.  

1.1.9 P1. Capital punishment is killing a human being.

C. Capital punishment is wrong.

Again, when regimenting an argument, we ordinarily just show what is explicitly present in the

original.  When evaluating an argument, we can mention suppressed premises.  For instance, we can

convert 1.1.9 into a more complete argument by inserting a second premise.

1.1.10 P1. Capital punishment is killing a human being.

P2. Killing a human being is wrong. 

C. Capital punishment is wrong.

Notice that P2 here is contentious, which may explain why someone might suppress it.  Still,

filling out an enthymeme is a job for later, once you have become confident regimenting arguments as

they appear.

Exercises 1.1.  Regiment each of the following arguments into premise/conclusion form.  The

inspirations for each argument are noted; not all arguments are direct quotations.

1. Statements are meaningful if they are verifiable.  There are mountains on the other side of the moon. 

No rocket has confirmed this, but we could verify it to be true.  Therefore, the original statement is

significant. (AJ Ayer, Language, Truth, and Logic)

2. It is not only words that are symbolic, but rather, it is things. Everything in nature represents some state

of mind. This state of mind can be depicted by presenting its natural appearance as a picture. An enraged

man is a lion, a cunning man is a fox, a firm man is a rock, and a learned man is a torch. Distances behind

and in front of us are respectively images of memory and hope. (Ralph Waldo Emerson, Nature)
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3. As humans, we should believe in the theory that best accounts for our sense experience. If we believe

in a theory, we must believe in its ontological commitments. The ontological commitments of any theory

are the objects over which that theory first-order quantifies. The theory which best accounts for our sense

experience first order quantifies over mathematical objects. Then, we should believe that mathematical

objects exist. (W.V. Quine)

4. The workingman does not have time for true integrity on a daily basis.  He cannot afford to sustain the

manliest relations to men, for his work would be minimized in the market.  (Henry David Thoreau,

Walden)

5. It is hard not to verify in our peers the same weakened intelligence due to emotions that we observe in

our everyday patients.  The arrogance of our consciousness, which in general, belongs to the strongest

defense mechanisms, blocks the unconscious complexes.  Because of this, it is difficult to convince

people of the unconscious and in turn to teach them what their conscious knowledge contradicts.

(Sigmund Freud, The Origin and Development of Psychoanalysis)

6. The passage from one stage to another may lead to long-continued different physical conditions in

different regions.  These changes can be attributed to natural selection.  Hence, the dominant species are

the most diffused in their own country and make up the majority of the individuals, and often the most

well marked varieties. (Charles Darwin, On the Origin of Species)

7. All of psychology has gotten stuck in moral prejudices and fears.  No one has come close to

understanding it as the development of the will to power.  However, if a person even begins to regard the

affects of hatred, envy, covetousness, and the lust to rule as conditions of life and furthermore, as factors

essential to the general economy of life, he will begin to get seasick.  At this point, he begins to lose

himself, and sail over morality.  Thus, psychology becomes again the path to fundamental problems.

(Friedrich Nietzsche, Beyond Good and Evil)

8. Man has no choice about his capacity to feel that something is good or evil.  But what he will consider

good or evil depends on his standard of value.  Man has no automatic knowledge and thus no automatic

values.  His values are a product of either his thinking or his evasions. (Ayn Rand, The Virtue of

Selfishness)

9. We must be realists about mathematics.  Mathematics succeeds as the language of science.  And, there

must be a reason for the success of mathematics as the language of science.  But, no positions other than

realism in mathematics provide a reason. (Hilary Putnam)

10. Local timelines are temporally ordered.  The faster you go, the quicker you get to your destination. 

As you go faster, time itself becomes compressed.  But it is not possible to go so fast that you get there

before you started. (Albert Einstein, Relativity)

11. The sphere is the most perfect shape, needing no joint and being a complete whole.  A sphere is best

suited to enclose and contain things.  The sun, moon, plants, and starts are seen to be of this shape.  Thus,

the universe is spherical.  (Nicolaus Copernicus, The Revolution of The Celestial Orbs)

12. The happiest men are those whom the world calls fools.  Fools are entirely devoid of the fear of death. 

They have no accusing consciences to make them fear it.  Moreover, they feel no shame, no solicitude, no

envy, and no love.  And they are free from any imputation of the guilt of sin. (Desiderius Erasmus, In

Praise of Folly)
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13. It is impossible for someone to scatter his fears about the most important matters if he knows nothing

about the universe but gives credit to myths.  Without the study of nature, there is no enjoyment of pure

pleasure. (Epicurus of Samos, Sovran Maxims)

14. If understanding is common to all mankind, then reason must also be common.  Additionally, the

reason which governs conduct by commands and prohibitions is common to us.  Therefore, mankind is

under one common law and so are fellow citizens. (Marcus Aurelius, Meditations)

15. Rulers define ‘justice’ as simply making a profit from the people.  Unjust men come off best in

business.  But just men refuse to bend the rules.  So, just men get less and are despised by their own

friends. (Plato, Republic)

16. We must take non-vacuous mathematical sentences to be false.  This is because we ought to take

mathematical sentences at face value.  If we take some sentences to be non-vacuously true, then we have

to explain our access to mathematical objects.  The only good account of access is the indispensability

argument.  But the indispensability argument fails. (Hartry Field)

17. Labor was the first price, in that it yielded money that was paid for all things.  But it is difficult to

ascertain the proportion between two quantities of labor. Every commodity is compared with other

exchanged commodities rather than labor.  Therefore, most people better understand the quantity of a

particular commodity, than the quantity of labor. (Adam Smith, The Wealth of Nations)

18. Authority comes from only agreed conventions between men. Strength alone is not enough to make a

man into a master.  Moreover, no man has natural authority over his fellows and force creates no right.

(Jean Jacques Rousseau, The Social Contract)

19. Mathematics is defined as the indirect measurement of magnitude and the determination of

magnitudes by each other.  Concrete mathematics aims to discover the equations of phenomena.  Abstract

mathematics aims to educe results from equations.  Therefore, concrete mathematics discovers results by

experiment and abstract mathematics derives results from the discovered equations and obtains unknown

quantities from known. (Auguste Comte, The Course in Positive Philosophy)

20. Just as many plants only bear fruit when they do not grow too tall, so in the practical arts, the

theoretical leaves and flowers must not be constructed to sprout too high, but kept near to experience,

which is their proper soil. (Carl von Clausewitz, On War)

21. The greatest danger to liberty is the omnipotence of the majority.  A democratic power is never likely

to perish for lack of strength or resources, but it may fall because of the misdirection of this strength and

the abuse of resources.  Therefore, if liberty is lost, it will be due to an oppression of minorities, which

may drive them to an appeal to arms. (Alexis de Tocqueville, Democracy in America)

22. There is no distinction between analytic and synthetic claims.  If there is an analytic/synthetic

distinction, there must be a good explanation of synonymy.  The only ways to explain synonymy are by

interchangeability salva veritate or definition.  However, interchangeability cannot explain synonymy. 

And definition presupposes synonymy. (W.V. Quine)
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23. The object of religion is the same as that of philosophy; it is the internal verity itself in its objective

existence.  Philosophy is not the wisdom of the world, but the knowledge of things which are not of this

world.  It is not the knowledge of external mass, empirical life and existence, but of the eternal, of the

nature of God, and all which flows from his nature.  This nature ought to manifest and develop itself. 

Consequently, philosophy in unfolding religion merely unfolds itself and in unfolding itself it unfolds

religion. (Georg Wilhelm Friedrich Hegel, The Philosophy of Religion)

24. That the world is my idea is a truth valid for every living creature, though only man can contemplate

it. In doing so, he attains philosophical wisdom.  No truth is more absolutely certain than that all that

exists for knowledge and therefore this world is only object in relation to subject, perception of a

perceiver.  The world is an idea. (Arthur Schopenhauer, The World as Will and Idea)

25. Every art and every inquiry, and similarly every action and pursuit, is thought to aim at some good;

and for this reason the good has rightly been declared to be that a which all things aim. (Aristotle,

Nicomachean Ethics)

26. We should be committed to the entities hypothesized by the mathematics in question.  There exist

genuine mathematical explanations of empirical phenomena.  We should be committed to the theoretical

posits hypothesized by these mathematical explanations. (Paolo Mancosu)

27. By ‘matter’ we are to understand an inert, senseless substance, in which extension, figure, and motion

do actually subsist.  But it is evident from what we have already shown that extension, figure, and motion

are only ideas existing in the mind, and that an idea can be like nothing but another idea, and that

consequently neither they nor their archetypes can exist in an unperceiving substance.  Hence it is plain

that the very notion of what is called matter, or corporeal substance, involves a contradiction in it.

(George Berkeley, A Treatise Concerning the Principles of Human Knowledge)

28. Reading challenges a person more than any other task of the day.  It requires the type of training that

athletes undergo, and with the same life-long dedication.  Books must be read as deliberately and

reservedly as they were written.  Thus, to read well, as in, to read books in a true spirit, is a noble

exercise. (Henry David Thoreau, Walden)

29. Love, friendship, respect, and admiration are the emotional responses of one man to virtues of

another, the spiritual payment given in exchange for the personal, selfish, pleasure which one man derives

from virtues of another.  To love is to value.  The man who does not value himself cannot value anyone or

anything. (Ayn Rand, The Virtue of Selfishness)

30. The only course open to one who wished to deduce all our knowledge from first principles would be

to begin with a priori truths. An a priori truth is a tautology.  From a set of tautologies alone, only further

tautologies can be further deduced.  However, it would be absurd to put forward a system of tautologies

as constituting the whole truth about the universe.  Therefore, we cannot deduce all our knowledge from

first principles. (AJ Ayer, Language, Truth, and Logic)

31. Men, in the state of nature, must have reached some point when the obstacles maintaining their state

exceed the ability of the individual.  Then the human race must either perish or change.  Men cannot

create new forces, only unite and direct existing ones.  Therefore, they can preserve themselves by only

combining forces great enough to overcome resistance. (Jean Jacques Rousseau, On the Social Contract)
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32. Physics can be defined as the study of the laws which regulate the general properties of bodies

regarded en masse.  In observing physics, all senses are used.  Mathematical analysis and experiments

help with observation.  Thus in the phenomena of physics man begins to modify natural phenomena.

(Auguste Comte, The Course in Positive Philosophy)

33. There are not two indiscernible individuals in our world.  If there were two indiscernible individuals

in our world then there must be another possible world in which those individuals are switched.  God

could have had no reason for choosing one of these worlds over the other.  But God must have a reason

for acting as she does.

34. In aristocratic countries, great families have enormous privileges, which their pride rests on.  They

consider these privileges as a natural right ingrained in their being, and thus their feeling of superiority is

a peaceful one.  They have no reason to boast of the prerogatives which everyone grants to them without

question.  So, when public affairs are directed by an aristocracy, the national pride takes a reserved,

haughty and independent form. (Alexis de Tocqueville, Democracy in America)

35. It must be some one impression, that gives rise to every real idea.  But self or person is not any one

impression, but that to which our several impressions and ideas are supposed to have a reference.  If any

impression gives rise to the idea of self, that impression must continue invariably the same through the

whole course of our lives, since self is supposed to exist after that manner.  But there is no impression

constant and invariable.  Pain and pleasure, grief and joy, passions and sensations succeed each other and

never all exist at the same time.  It cannot, therefore, be from any of these impressions or from any other

that the idea of self is derived, and, consequently, there is no idea of the self. (Hume, A Treatise of Human

Nature)

36. Every violent movement of the will, every emotion, directly agitates the body.  This agitation

interferes with the body’s vital functions.  So we can legitimately say that the body is the objectivity of

the will. (Arthur Schopenhauer, The World as Will and Idea)

37. The work of the defensive forces of the ego prevents repressed desires from entering the conscious

during waking life, and even during sleep.  The dreamer knows just a little about the meaning of his

dreams as the hysteric knows about the significance of his symptoms.  The technique of psychoanalysis is

the act of discovering through analysis, the relation between manifest and latent dream content. 

Therefore, the only way to treat these patients is through the technique of psychoanalysis. (Sigmund

Freud, The Origin and Development of Psychoanalysis)

38. Either mathematical theorems refer to ideal objects or they refer to objects that we sense.  If they refer

to ideal objects, the radical empiricist cannot defend our knowledge of them, since we never sense such

objects.  If they refer to objects that we sense, they are false.  So for the radical empiricist, mathematical

theorems are either unknowable or false.  In either case, the radical empiricist cannot justify any proof of

a mathematical theorem. (John Stuart Mill)

39. The sense or meaning of a term determines its reference.  That is, it is impossible for terms to differ in

extension while having the same intension.  Reference can vary without variation in thought.  So, the

senses of terms must be able to vary without variation in thought.  So, our thoughts do not determine the

meanings of our terms; meanings are not in the head. (Hilary Putnam)
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40. My mind is distinct from my body.  I have a clear and distinct understanding of my mind, independent

of my body.  I have a clear and distinct understanding of my body, independent of my mind.  Whatever I

can clearly and distinctly conceive of as separate, can be separated by God, and so are really distinct.

(René Descartes, Meditations on First Philosophy)
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§1.2: Validity and Soundness

Consider the following three arguments.

1.2.1 P1. All philosophers are thinkers.

P2. Socrates is a philosopher.

C. Socrates is a thinker.

1.2.2 P1. All persons are fish.

P2. Barack Obama is a person.

C. Barack Obama is a fish.

1.2.3 P1. All mathematicians are platonists.

P2. Jerrold Katz is a platonist.

C. Jerrold Katz is a mathematician.

1.2.1 is a good argument for two reasons.  First, the conclusion follows from the premises. 

Second, the premises are true.  1.2.2 and 1.2.3 are both bad arguments, but for different reasons.  In 1.2.2,

the conclusion follows from the premises, but the first premise is false.  In 1.2.3, the premises are true, but

the conclusion does not follow from the premises.  We call arguments like 1.2.3 invalid.  1.2.2 is valid,

but unsound.

The validity of an argument depends on its form.  An argument is valid if the conclusion follows

logically from the premises.  Certain forms of argument are valid.  Certain forms are invalid.  Most of the

first three chapters of this book is dedicated to working with rigorous methods for distinguishing between

valid and invalid arguments.

The soundness of a valid argument depends on truth of its premises.  A valid argument is sound if

all of its premises are true.  A valid argument is unsound if any one of its premises are false.  Only valid

arguments can be sound.  (Actually, usage of ‘sound’ varies.  Some people categorize invalid arguments

as sound or unsound, but I will not do so.)

Valid arguments are important because in deductive logic, if the form of an argument is valid and

the premises are all true, then the conclusion must be true.  The previous sentence is the most important

sentence of this book.  The power of deductive logic is simply that if the premises of an argument in a

valid form are true, then, on pain of contradiction, the conclusion of the argument must be true.  In invalid

arguments, the premises can be true at the same time that the conclusion is false.  The central theme of

this book, then, is to identify the valid forms of argument.

The validity of an argument is independent of the truth of the premises of an argument.  As we

saw, 1.2.1 is both valid and sound, while 1.2.2 is valid but unsound.  An argument can also have all true

premises while being invalid, like 1.2.4.

1.2.4 P1. 2 + 2 = 4.

P2. The sky is blue.

C. Kant wrote the Critique of Pure Reason.

Validity is related to possibility, while soundness is related to truth.  An argument is valid if it is

impossible to make the conclusion false while the premises are true by substituting alternative sentences

of the same logical form.  This last claim will become a little clearer once we have looked more carefully

at the nature of logical form.
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Notice that each of the arguments 1.2.5 - 1.2.7 has something in common, which we call its

logical form.

1.2.5 Either the stock market will rise or unemployment will go up.

The market will not rise.

So, unemployment will increase.

1.2.6 You will get either rice or beans.

You do not get the rice.

So, you will have the beans.

1.2.7 The square root of two is either rational or irrational.

It is not rational.

So, it’s irrational.

We can represent this common logical form by substituting variables for the specific sentences in

the argument, using the same variable each time a particular sentence is repeated.

1.2.8 Either P or Q.

Not P.

So, Q.

Just as an architect, when building a building, focuses on the essential structures, so a logician

looks mainly at the form of an argument, ignoring the content of the sentences.  ‘P’ and ‘Q’, above, are

variables, standing for statements.  ‘Either P or Q’ is a compound sentence, made of simple ones.  We call

the form 1.2.8 Disjunctive Syllogism.  In Chapter 2, we will identify eight basic valid forms, and use

them to determine whether any argument is valid.  To start the process of identifying valid forms, we rely

on our intuitive judgments about whether some sample inferences are valid or not.  The main purpose of

the rest of Chapter 1 is to develop the skills for using a rigorous method to determine whether any form is

valid.

In our study of propositional logic, we will use capital English letters to stand for simple, positive

propositions.  Simple propositions are often of subject-predicate form, but not necessarily.  They are the

shortest examples of statements; they can not be decomposed further in propositional logic.  In predicate

logic, Chapter 3, we work beneath the surface of propositions.

Exercises 1.2.  Determine whether each of the following arguments is intuitively valid or invalid.  For

valid arguments, determine, as best you can, whether they are sound.

1. Obama and McCain were the only two major-party candidates in the 2008 election.  A major party

candidate won the election.  McCain did not win.  So, Obama won the 2008 election.

2. Either Obama wins the 2012 presidential election or Romney does.  If Obama wins, all of California

will be happy.  If Romney wins, all of Utah will be happy.  So either all of California is happy or all of

Utah is happy.

3. Only men have been presidents of the United States.  All presidents have been wealthy.  Obama is a

man.  Therefore, Obama is wealthy. 
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4. Only citizens can run for president.  All citizens who have run for president have been male.  Bill

Clinton is a male citizen.  Hence, he ran for president.

5. Only citizens can be president of the United States.  Only men have been president.  So, only male

citizens have been president.

6. Frankfort is the capital of Kentucky.  Trenton is the capital of New Jersey.  Phoenix is the capital of

Arizona.  It follows that Raleigh is the capital of North Carolina. 

7. All princesses are women.  Kate Middleton is a princess.  Therefore, Kate Middleton is a woman.

8. All horses are mammals.  All horses have four legs.  So, all mammals have four legs.

9. All unicorns are pink.  All unicorns have horns.  If something is pink and has a horn, it must be a

unicorn. 

10. Archaeologists are anthropologists.  Anthropologists are social scientists.  It follows that

archaeologists are social scientists.

11. All trees are tall.  All tall things are hard to climb.  So, all trees are hard to climb. 

12. Either all cats are black or all cats are fluffy, but no cat is both.  My cat is fluffy.  So, my cat is not

black.

13. Either some cats are black or all cats are fluffy.  All cats are black.  So, some cats are fluffy.

14. Some cats are black. Some cats are fluffy.  So, some cats are black and fluffy. 

15. Some cats are fluffy.  All cats have whiskers.  So all fluffy cats have whiskers. 

16. Physics and psychology are sciences.  Psychologists are smarter than physicists.  Therefore,

psychology is better than physics. 

17. All windows are made of glass.  Glass is transparent.  So all windows must be transparent.

18. All penguins are birds.  All birds have wings.  All winged creatures can fly.  So it follows that

penguins can fly.

19. All eagles are birds.  Eagles are endangered species.  So, birds are endangered species. 

20. If it is sunny, then the lacrosse team practices outside.  It is sunny.  So, the lacrosse team practices

outside.

21. Either it is raining or it is sunny, but not both.  It is not raining.  So, it is sunny. 

22. Either I stop smoking or I risk getting ill.  If I stop smoking, then I will have withdrawal symptoms. 

If I get ill, then I risk death.  So either I have withdrawal symptoms or I risk death.

23. All humans breathe.  Bob breathes.  Hence, Bob is human.
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24. All guitars are instruments.  All guitars have strings.  So, all instruments have strings. 

25. All fish live in the Atlantic Ocean.  The Atlantic Ocean is a body of water.  So, all fish live in a body

of water. 

26. Any papers that receives an A has a thesis.  Wanda’s paper receives an A.  Hence, her paper has a

thesis. 

27. All rats have tails.  Some rats are white.  So, all rats are white and have tails. 

28. All rats have tails.  Some rats are white.  Therefore, all white rats have tails. 

29. All rats are white.  Only white rats are used in genetic experiments.  A rat is used in a genetic

experiment. So, that rat must be white. 

30. All squares are rectangles.  All rectangles are parallelograms.  All parallelograms are quadrilaterals. 

Therefore, all squares are quadrilaterals. 



Marcus, What Follows, page 20

§1.3: Logical Connectives and Translation

Natural languages, like English, as well as many formal languages, have a finite stock of simple,

or atomic, sentences and an infinite number of grammatically correct sentences.  To produce complex

sentences from simple ones, we use what the grammarian calls conjunctions and what logicians call

connectives.  The principle by which we can compose longer sentences from shorter ones is called

compositionality.  

In classical logic, we assume compositionality: we can construct sentences of any length.  In

natural language, we usually find it convenient to divide our discourse into small sentences.  But,

compositionality is evident, to some degree, in natural language too.  Consider this passage from a much-

longer story composed of a single sentence.

Now they’re going to see who I am, he said to himself in his strong new man’s voice, many years

after had seen the huge ocean liner without lights and without any sound which passed by the

village one night like a great uninhabitated palace, longer than the whole village and much taller

than the steeple of the church, and it sailed by in the darkness toward the colonial city on the the

other side of the bay that had been fortified against buccaneers, with its old slave port and the

rotating light, whose gloomy beams transfigured the village into a lunar encampment of glowing

houses and streets of volcanic deserts every fifteen seconds… (Gabriel García Márquez, “The

Last Voyage of the Ghost Ship”, empahses added).

Grammarians usually bristly at long, run-on sentences.  But, from a logical point of view, we can

build sentences of indefinite length by repeated applications of connectives.  In logic, we reserve the term

‘conjunction’ for a particular one of the various logical connectives.  The system of propositional logic

that we will study uses five connectives, which we identify by their syntactic properties, or shapes.  

Tilde -

Dot C

Wedge w

Hook e

Triple-bar /

These connectives are used to represent certain logical operations of conjoining simple sentences. 

We will consider five basic logical operations, though systems of logic can be built from merely one or

two operations.  We could also introduce other, less-intuitive logical operations.  These five are standard.

Negation  - 

Conjunction C

Disjunction w

Material Implication e

Material Biconditional / 

What follows is a more detailed explication of each of our five connectives.
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Negation

Negation is a unary operator, which means that it applies to a single proposition.  The other four

operators are all binary, relating two propositions.  Some English indicators of negation include:

Not

It is not the case that

It is not true that

It is false that

Each of the three sentences following the proposition 1.3.1 expresses a negation of it.

1.3.1 John will take the train

1.3.2 John won’t take the train.

1.3.3 It’s not the case that John will take the train.

1.3.4 John takes the train...not!

We can represent 1.3.1 as ‘P’ and each of 1.3.2 - 1.3.4 as ‘-P’.  

A proposition is called a negation if its main operator is a negation.  1.3.5 - 1.3.7 are all

negations.

1.3.5 -R

1.3.6 -(P C Q)

1.3.7 -{[(A w B) e C] C -D}

Conjunction

Some English indicators of a logical conjunction are:

and

but

also

however

yet

still

moreover

although

nevertheless

both

Here are some English sentences which we can represent as conjunctions.

1.3.5 Angelina walks the dog and Brad cleans the floors. A C B

1.3.6 Although Angelina walks the dog, Brad cleans the floors. A C B

1.3.7 Bob and Ray are comedians. B C R

1.3.8 Carolyn is nice, but Emily is really nice. C C E
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While the logical operator in each of 1.3.5 - 1.3.8 is a conjunction, the tone of the conjunction

varies.  Logicians often distinguish between the logical and pragmatic properties of language.  ‘And’ and

‘but’ are both used to express conjunctions even though they have different practical uses.

We use conjunctions to combine complete sentences.  In English, 1.3.7 is short for a more

complete sentence like 1.3.9.

1.3.9 Bob is a comedian and Ray is a comedian. 

Sometimes, sentences using ‘and’ are not naturally rendered as conjunctions.

1.3.10 Bob and Ray are brothers.

1.3.10 is most naturally interpreted as expressing a relation between two people, and not a

conjunction of two sentences.  Of course, 1.3.10 could also be used to express the claim that both Bob and

Ray are monks, in which case it would be best logically represented as a conjunction.  In propositional

logic, we regiment the most natural sense of 1.3.10 merely as a simple letter: ‘P’, say.  We will explore

the latter sense in Chapter 3.  The difference between the two interpretations can not be found in the

sentence itself.  It has to be seen from the use of the sentence in context.  Many sentences are ambiguous

when seen out of context.  In symbols, 1.3.11 - 1.3.13 are all conjunctions.

1.3.11 P C -Q

1.3.12 (A e B) C (B e A)

1.3.13 (P w -Q) C -[P / (Q C R)]

Disjunction

Some English indicators of disjunction include: 

or

either

unless

Most disjunctions use an ‘or’.  ‘Unless’ is tricky; see Chapter 4, §2, for a discussion of its

subtleties.  1.3.14 - 1.3.16 are English sentences which we can represent as disjunctions.

1.3.14 Either Paco makes the Website, or Matt does. P w M

1.3.15 Jared or Rene will go to the party. J w R

1.3.16 Justin doesn’t feed the kids unless Carolyn asks him to. J w C

In symbols, all of the following are disjunctions:

1.3.17 -P w Q

1.3.18 (A e B) w (B e A)

1.3.19 (P w -Q) w -[P / (Q C R)]
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Material Implication (The Conditional)

Some English indicators of material implication are: 

if

only if

only when

is a necessary condition for

is a sufficient condition for

implies

entails

provided that

given that

on the condition that

in case

Material implication is sometimes called the material conditional.  As we will see, it is not a

perfect representation of the natural-language conditional.  But there seem to be no better ways to

represent the conditional logically.  Some functions of the natural language conditional are not logical. 

Material implication is the best logical form for the natural language conditional, and using material

implication allows us to regiment some conditional sentences effectively.

When using material implication, unlike with disjunctions and conjunctions, the order of the

related propositions is important.  In ‘A e B’, ‘A’ is called the antecedent and ‘B’ is called the

consequent.  While we’re defining terms, given a conditional ‘A e B’, we can define three related

conditionals.  ‘B e A’ is called the converse; ‘-A e -B’ is called the inverse; and ‘-B e -A’ is called the

contrapositive.  A statement and its contrapositive are logically equivalent.  The inverse and the converse

of a conditional are logically equivalent to each other.  But, a conditional is not equivalent to either its

inverse or its converse.  I will explain those results and what ‘logical equivalence’ means in §1.6.

Here are some examples of natural language conditionals and their translations into propositional

logic, using ‘A’ to stand for ‘you join me’ and ‘B’ to stand for ‘I go to the movies’.

1.3.20  If you join me, then I go to the movies.

1.3.21  You join me if I go to the movies.

1.3.22  You join me only if (only when) I go to the movies.

1.3.23  Your joining me is a necessary condition for my

going.

1.3.24  Your joining me is a sufficient condition for my

going.

1.3.25  A necessary condition of your joining me is my

going.

1.3.26  A sufficient condition for your joining me is my

going.

1.3.27  Your joining me entails (implies) that I go to the

movies.

1.3.28  You join me given (provided, on the condition) that

I go.

If A then B

If B then A

A only if (only when) B

A is necessary for B

A is sufficient for B

B is necessary for A

B is sufficient for A

A entails (implies) B

A given (provided, on the

condition) B

A e B

B e A

A e B

B e A

A e B

A e B

B e A

A e B

B e A

Note that necessary conditions are consequents, while sufficient conditions are antecedents.  The

case of sufficient conditions is fairly easy to understand.  Necessary conditions are trickier.  If A is
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necessary for B, then if B is true, we can infer that A must also be true.  For example, some sort of

exercise is necessary for good physical health.  We can thus claim that if someone is healthy, then he or

she must do some sort of exercise; the necessary condition is in the consequent.  But, we can not thus

claim that if someone exercises, he or she must be physically healthy.  There might be other conditions

impeding such a person’s health.  To remember that sufficient conditions are antecedents and necessary

conditions are consequents, we can use the mnemonic ‘SUN’.  Rotating the ‘U’ to a ‘e’ we get ‘S e N’.

In symbols, all of the following are conditionals.

1.3.29 -P e Q

1.3.30 (A e B) e (B e A)

1.3.31 (P w -Q) e -[P / (Q C R)]

The Material Biconditional

Biconditional statements are really conjunctions of two conditional statements.  Some English

indicators of a biconditional include:

if and only if

is a necessary and sufficient condition for

just in case.

The biconditional ‘A / B’ is short for ‘(A e B) C (B e A)’, to which we will return, once we are

familiar with truth conditions.  Here is an English example of a biconditional.

1.3.32 You’ll be successful just in case you work hard and are lucky. S / (W C L)

In symbols, all of the following are biconditionals:

1.3.33 -P / Q

1.3.34 (A e B) / (B e A)

1.3.35 (P w -Q) / -[P / (Q C R)]

Ambiguous Cases

Now that you have seen each of the five connectives and their English language approximations,

you can start to translate both simple and complex English sentences into propositional logic.  Given a

translation key, you can also interpret sentences of propositional logic as English sentences.  When

translating between English and propositional logic, make sure to resolve or avoid ambiguities.

1.3.33 You may have salad or potatoes and carrots.

1.3.34 (S w P) C C

1.3.35 S w (P C C)

We might translate 1.3.33 as 1.3.34, but, we might translate it as 1.3.35.  There is an important

difference between the two translations.  In the first case, you are having carrots and either salad or

potatoes.  In the second case, you are either having one thing (salad) or two things (potatoes and carrots). 

To avoid ambiguities, look for commas and semicolons.
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1.3.36 You may have salad or potatoes, and carrots.

1.3.37 You may have salad, or potatoes and carrots.

With commas, 1.3.36 is clearly best translated as 1.3.34, while 1.3.37 is clearly best translated as

1.3.35. 

Exercises 1.3a.  Translate each sentence into propositional logic using any obvious letters.

1. Andre likes basketball.

2. Andre doesn’t like soccer.

3. Pilar and Zach are logicians.

4. Sabrina wants either a puppy or a kitten.

5. Kangaroos are marsupials and they live in Australia.

6. Pablo will go to the store if and only if his brother drives him and pays for gas.

7. Everybody loves Raymond, or not.

8. Brittany likes fish and lizards, but not cats.

9. If Beth rides her bike, she gets to work earlier.

10. José cooks only when his mother comes over for dinner.

11. Martina doesn’t like shopping unless Jenna comes with her.

12. The world will end just in case aliens invade.

13. It is safe to swim if and only if the water is calm or a lifeguard is on duty.

14. Doctors are helpful unless their patients are rude.

15. Logic is challenging and fun given that you pay attention in class.

16. Turtles live long lives and are happy creatures, unless they are harmed. 

17. Elliott wants to skateboard or write songs and play them.

18. Cars are eco-friendly if they are hybrids or run on low-emission fuel.

19. Dylan doesn’t like math or science.

20. Cara will go horseback riding only if it doesn’t rain and she has a helmet. 



Marcus, What Follows, page 26

Exercises 1.3b.  Interpret the following sentences of propositional logic using the given translation key. 

Strive for elegance in your English sentences.

A: Louisa teaches English.

B: Louisa teaches history.

C: Louisa teaches in a middle school.

D: Louisa has a Master’s degree.

E: Javier teaches English.

F: Suneel teaches English.

1. C e (B w A)

2. A C -B

3. A e (E C F)

4. -D e -(A w B)

5. -(E w F) e B

G: Jeremy majors in philosophy.

H: Jeremy majors in physics.

I: Jeremy majors in psychology.

J: Jeremy is a college student.

K: Marjorie is a philosophy professor.

L: Marjorie teaches logic.

6. (K C L) e G

7. J e (G C I)

8. -(G C I) w -H

9. -(K C L) e (I w H)

10. G / (J C K)

M: Carolina plants vegetables.

N: Carolina plants flowers.

O: Carolina has a garden.

P: Carolina’s plants grow.

Q: Carolina sprays her plants with pesticides.

R: Deer eat the plants.

11. O e (M C N)

12. (O C P) e R

13. [(N C P) C Q] e -R

14. [(M w N) C P] e (Q w R)

15. -P / - Q
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§1.4. Syntax of PL: Wffs and Main Operators

To this point, we have been rather causal about the language of propositional logic.  I will now be

more rigorous in setting up the syntax of our first formal language of the course, one of many different

languages for propositional logic.  I will call our language PL.  To specify a formal language, we start

with a list of the vocabulary of the language, its formal symbols.  For our purposes, the following thirty-

seven different symbols will suffice.

Capital English letters, used as propositional variables A ... Z

Five connectives: -, C, w, e, /

Punctuation: (, ), [, ], {, }

Notice that PL contains only 26 propositional variables.  More flexible systems of propositional

logic can accommodate infinitely many propositional variables by including the prime symbols among its

vocabulary and allowing iterated repetitions of it.

P, P', P'', P''', P'''', P'''''...

Since we won’t be needing so many variables, we will just use English letters with no primes. 

But keep in mind that we could use just one letter and one prime symbol to get infinitely many variables.  

Once we have specified the vocabulary of a formal language, we can start to put these symbols

together.  Consider the following two strings of English letters.

1.4.1 baker

1.4.2 aebkr

1.4.1 is a well-formed English expression, a word, and 1.4.2 is not.  Analogously, in our language

of propositional logic, only some strings of symbols are well-formed.  We call strings of logical symbols

which are constructed properly well-formed formulas, or wffs.  ‘Wff’ is pronounced like ‘woof’, as if you

are barking.  1.4.3 and 1.4.4 are wffs, while 1.4.5 and 1.4.6 are not wffs.

1.4.3 P C Q

1.4.4 (-P w Q) e -R

1.4.5 C P Q

1.4.6 Pq w R-

In English, we can determine if a string of letters is a word by looking at a list of English words,

as in a dictionary.  Such a list is very long, containing perhaps over a million entries.  But, it is a finite, if

growing, list.  In propositional logic, in contrast, we have infinitely many wffs.  Wffs of indefinite length

may be constructed by applying a simple set of rules, called formation rules.
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Formation rules for wffs of PL

1. A single capital English letter is a wff.

2. If á is a wff, so is -á.

3. If á and â are wffs, then so are:

(á C â)

(á w â)

(á e â)

(á / â)

4. These are the only ways to make wffs.

By convention, we may drop the outermost brackets that automatically appear when forming a

wff using Rule 3.  Those brackets must be replaced when a shorter formula is included in a more-complex

formula.  1.4.7 provides an example of how one might construct a complex wff using the formation rules.

1.4.7 W By rule 1

X By rule 1

-W By rule 2

-W C X By rule 3, and the convention for dropping brackets

(-W C X) / -X By rules 2 and 3, putting the brackets back

-[(-W C X) / -X] By rule 2

The last connective added according to the formation rules is called the main operator. We can

determine the main operator of any wff of PL by analyzing the formation of that wff, as I do at 1.4.8.

1.4.8 (-M e P) C (-N e Q)

‘M’, ‘P’, ‘N’, and ‘Q’ are all wffs, by rule 1.

‘-M’ and ‘-N’ are wffs by rule 2.

‘(-M e P)’ and ‘(-N e Q)’ are then wffs by rule 3.

Finally, the whole formula is a wff by rule 3 and the convention for

dropping brackets.
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Exercises 1.4a.  Are the following formulas wffs?  If so, which connective is the main operator?

1. C e D C E

2. (T C V)-W

3. (J w -J) e K

4. -[(A w B) e C]

5. -(A C B) e C w D

6. (P C Q w R) e -S

7. - (K e N) e (L C M)

8. -K [M / (N C O)]

9. (D w E) / -[(F e G) C H)]

10. [D e (E C F)] w (F / D)

11. (S w L) e C e (Q C R)

12. (X w Y) / [(Y w Z) C (X w Z)]

13. (X C Y-Z) e [(F w -G) / -H]

14. -{(P C Q) e [(P C R) w (R e Q)]}

15. [(T w U) C (U w V)] e [(V C W) w (T C W)]

Exercises 1.4b.  Translate these sentences into propositional logic using any obvious letters.

1. The restaurant served chicken, and either peas or carrots.

2. Making butter is a necessary condition for the farmer to go to the market and make a profit.

3. Patrons may have corn and potatoes if and only if they do not order carrots.

4. The restaurant serves pie or cheesecake or ice cream for dessert.

5. If the restaurant runs out of cheesecake, then you can have a meal of chicken and pie and ice cream.

6. A farmer keeps goats in a pen and sheep in a pen only if the dogs and cat are kept inside.

7. Either the farmer shears the sheep and milks the cows, or he slops the pigs and walks the dogs.

8. If the farmer shears the sheep, then he makes wool, and if he milks the cows, then he makes butter. 

9. The restaurant doesn’t have peas, so instead they serve corn and potatoes.

10. If the farmer goes to the market, then he makes a profit, and his wife is happy.

11. Plato believed in the theory of forms and Aristotle held that there are four kinds of causes, but

Parmenides thought that only the one exists.

12. If Thales reduced everything to water, then Democritus was an atomist if and only if Heraclitus

claimed that the world is constantly in flux.

13. If Plato believed in the theory of forms or Democritus was an atomist, then Aristotle held that there

are four kinds of causes or Parmenides thought that only the one exists.
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14. Democritus was not an atomist if and only if Plato didn’t believe in the theory of forms and Thales

didn’t reduce everything to water.

15. Either Heraclitus claimed that the world is constantly in flux or Thales reduced everything to water,

and either Aristotle held that there are four kinds of causes or Parmenides thought that only the one exists.

16. Smart believes that minds are brains and Skinner thinks that inner states are otiose, unless Descartes

argues that the mind and body are distinct. 

17. Either Putnam claims that minds are probabilistic automata, or the Churchlands deny that there are

any minds and Turing believes that machines can think.

18. Searle rejects the possibility of artificial intelligence if and only if Smart believes that minds are

brains and Turing believes that machines can think.

19. Putnam doesn’t claim that minds are probabilistic automata and the Churchlands don’t deny that there

are any minds, if Skinner thinks that inner states are otiose, or Searle rejects the possibility of artificial

intelligence and Descartes doesn’t argue that the mind and body are distinct.

20. Either Turing believes that machines can think or Smart doesn’t believe that minds are brains, and the

Churchlands deny that there are any minds. 
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§1.5. Truth Functions

When constructing a formal system of logic, we start with a language like PL.  In §1.4 I provided

formation rules, or a syntax, for that language.  Once we have specified the language, there are two ways

that we can use it.  First, we can interpret the language, providing a semantics for it.  Second, we can use

the language in a deductive system by introducing transformation and/or inference rules.  We will study

inference rules in Chapter 2.  Here, we will discuss the interpretations, or semantics, of our language.

Informally, we might interpret some of our propositional variables as particular English

propositions.  For example, we might take ‘P C Q’ to stand for ‘It is both raining and snowing in Clinton

NY right now’.  More formally, and more generally, in PL and all standard propositional logics, we

interpret propositional variables by assigning truth values to them.  We will study a bivalent logic, which

means that we will consider only two truth values: truth and falsity.  Other systems of logic use three or

more truth values.

We have carefully circumscribed our language PL.  It does not contain tools for doing the

interpretation.  To interpret our formal language, we use a metalanguage.  Our metalanguage will be

English, supplemented with some specific symbols used with specific intents.  For example, we will use

‘1’ to represent truth and ‘0’ to represent falsity.  We specify rules of our metalanguage much less

formally.

We will start our study of the semantics of propositional logic by looking at how we calculate the

truth value of a complex proposition on the basis of the truth values of its component sentences.  We can

calculate the truth value of any complex proposition using the truth values of its component propositions

and the basic truth tables for each connective.  The fact that the truth values of complex propositions are

completely determined by the truth values of the component propositions is called truth-functional

compositionality.  Compositionality is a basic presupposition of our logic.  Consider a complex

proposition like 1.5.1 and its translation into PL 1.5.2.

1.5.1 Either The Hurt Locker or Avatar won the 2010 Oscar for Best Picture, but The Hurt

Locker won if, and only if, George Clooney did not win the 2010 Oscar for Best

Actor.

1.5.2 (H w A) C (H / -C)

We know the truth values of the component propositions H, A, and C: H is true because The Hurt

Locker won the Oscar.  A is false, since Avatar did not win the Oscar.  C is false because George Clooney

did not win the Oscar.  But what is the truth value of the whole complex proposition 1.5.1?

The truth value of a complex proposition is the truth value of its main operator.

To determine the truth value of a complex proposition, we combine the truth values of the

component propositions using rules for each connective.  These rules are summarized in basic truth

tables, one for each connective.

Once we combine these truth tables, our semantics, with our translations of natural languages into

PL, certain problems arise.  Not all of our natural-language sentences conform precisely to the semantics

given by the truth tables.  Difficulties arise for the conditional, in particular.  In this section, I discuss the

details of the truth tables for each connective and how to use the basic truth tables.  In Chapter 4,

especially §2 and §3, I discuss some of the more interesting philosophical questions which arise from our

use of the standard semantics I present here.
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Negation

1.5.3 Two plus two is four.

1.5.4 Two plus two is not four.

1.5.5 Two plus two is five.

1.5.6 Two plus two is not five.

Note that while 1.5.3 is true, its negation, 1.5.4, is false.  Also, while 1.1.5 is false, its negation,

1.5.6,  is true.  We generalize these results using a truth table.  In the first row of the truth table, we have a

connective, the tilde, and a Greek letter, á.  We will use Greek letters as metalinguistic variables which

stand for any object-language propositional variable.  The column under the ‘á’ represents all possible

assignments of truth values to a single proposition.  The column under the ‘-’ represents the values of the

negation of that proposition in each row.  A truth table for a complex proposition containing one variable

has two lines, since there are only two possible assignments of truth values.  This truth table says that if

the value of a propositional variable is true, the value of its negation is false, and if the value of a

propositional variable is false, the value of its negation is true.

- á

0 1

1 0

Conjunction

1.5.7 He likes logic and metaphysics.

1.5.7 is true if ‘He likes logic’ is true and ‘He likes metaphysics’ is true.  It is false otherwise. 

Note that we need four lines to explore all the possibilities of combinations of truth values of two

propositions: when both are true, when one is true and the other is false (and vice-versa), and when both

are false.

á C â

1 1 1

1 0 0

0 0 1

0 0 0

Our basic truth tables all have either two lines or four lines, since all of our connectives use either

one or two variables.  Truth tables for more-complex sentences, can be indefinitely long.  Truth tables

with three variables require eight lines.  With four variables we need sixteen lines.  More generally, truth

tables for n variables require 2  lines.  We will construct larger truth tables in §1.6.n
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Disjunction

1.5.8 She can get an A in either history or physics.

We are going to use an inclusive disjunction, on which 1.5.8 is false only when both component

statements are false.

á w â

1 1 1

1 1 0

0 1 1

0 0 0

There is an alternate use of ‘or’ on which a disjunction is false also when both of its component

propositions is false.

1.5.9 You may have either soup or salad.

Uses of 1.5.9 are usually made to express that one may have either soup or salad, but not both. 

This latter use of ‘or’ is called exclusive disjunction.  We can define exclusive disjunction in terms of

inclusive disjunction with the help of other connectives.  So, it does not matter whether we take inclusive

or exclusive disjunction as the semantics of w as long as we are clear about what we mean when we are

regimenting natural language sentences into our formal logic.

We will use inclusive disjunction, the w, to translate ‘or’ unless there is a good reason to switch to

exclusive disjunction.  See Chapter 4, §2, for a more-detailed discussion of exclusive disjunction.

Material Implication

1.5.10 If you paint my house, then I will give you $5000.

To interpret English-language conditionals, we use what is called the material interpretation,

represented by the truth table for e.

á e â

1 1 1

1 0 0

0 1 1

0 1 0

To understand the material interpretation, consider when 1.5.10 will be falsified.  It is true in the

first row, when both the antecedent and consequent are true.  It is false in the second row, when the
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antecedent is true and the consequent is false.  In the third and fourth rows, when the antecedent is false,

we consider 1.5.10 as unfalsified, and thus true.  We thus treat a conditional with a false antecedent as an

open, and therefore true, sentence.  Since you haven’t painted my house, 1.5.10 is true whether or not I

give you $5000.  The only case in which 1.5.10 is clearly false is when you paint my house and I fail to

give you the money; that’s the second row of the truth table for e.

The conditional is the trickiest connective, in large part because many of our uses of ‘if...then...’

are not truth-functional.  In other words, the truth value of many complex sentences which use

conditionals are not exclusively dependent on the truth values of their components.

1.5.11 If this sugar cube is dropped into a pot of warm water, then it will dissolve.

1.5.12 If this piece of steel is dropped into a pot of warm water, then it will dissolve.

We naturally believe that 1.5.11 is true and 1.5.12 is false.  The sentences depend for their truth

not merely on the truth values of the component propositions, but on the laws of physics.  But, they have

the same truth conditions as far as e is concerned.  We treat both sentences as true if the sugar cube and

the steel are never dropped into water.

Still, some uses of conditionals in English are truth-functional and we are going to use ‘e’ to

regiment conditionals into PL.  For a more-detailed discussion of the deep problem of how to understand

natural-language conditionals, see Chapter 4, §3.

The Material Biconditional

A biconditional is true if the component statements share the same truth value.  It is false if the

components have different values.

1.5.13 Supplies rise if and only if demand falls.

á / â

1 1 1

1 0 0

0 0 1

0 1 0

If supplies rise and demand falls, 1.5.13 is true.  If supplies don’t rise and demand doesn’t fall,

then 1.5.13 is true as well.  But if one happens without the other, then 1.5.13 is false.

The material biconditional is thus really a shorthand for two material conditionals: if á then â and

if â then á.  The result is that / works like an equals sign for propositions: it will be true if and only if the

truth values of the components are the same. 
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Truth Values of Complex Propositions

The basic truth tables can be used to evaluate the truth value of any proposition built using the

formation rules.

Method for Determining the Truth Value of a Proposition 

1. Assign truth values to each simple formula.

2. Evaluate any negations of those formulas.

3. Evaluate any connectives for which both values are known.

4. Repeat steps 2 and 3, working inside out, until you reach the main operator.

Remember, the truth value of a complex proposition is the truth value of its main operator.  Using

this method, we can evaluate the truth value for any sentence as long as we know the truth values of its

component propositions.  Consider 1.5.14.

1.5.14 (A w X) C -B

Let’s arbitrarily assume that A and B are true and X is false.  If we were starting with an English

sentence, we might be able to determine appropriate truth values of the component sentences.

First, assign the values to A, B, and X:

(A w X) C - B

1 0 1

Next, evaluate the negation of B:

(A w X) C - B

1 0 1 1

Since you know the values of the disjuncts, you can next evaluate the disjunction:

(A w X) C - B

1 1 0 0 1

Finally, you can evaluate the main operator, the conjunction:

(A w X) C - B

1 1 0 0 0 1

1.5.14 is thus false for the values we arbitrarily assumed.
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Let’s return to 1.5.2.  We can assign values to ‘H’, ‘A’, and ‘C’ since we already knew them. 

Then, we can use our method for determining the truth value of a complex proposition.

(H w A) C (H / - C)

1 1 0 1 1 1 1 0

1.5.2 is thus true.  1.5.15 and 1.5.16 are further examples.

1.5.15 A e (-X C -Y) where A is true and X and Y are false

A e (- X C - Y)

1 1 1 0 1 1 0

1.5.15 is true for our assumed values.

1.5.16 [(A C B) e Y] e [A e (C e Z)] where A, B, and C are true; Y and Z are false.

[(A C B) e Y] e [A e (C e Z)]

1 1 1 0 0 1 1 0 1 0 0

1.5.16 is true for the given assignments of truth values.

Complex Propositions with Unknown Truth Values

We have seen how to calculate the truth value of a complex proposition when the truth values of

the components are known.  Sometimes you don’t know truth values of one or more component variable.  

If the truth values come out the same, whatever values we assign, then the statement has that truth value. 

If the values come out different in different cases, then the truth value of the complex statement is really 

unknown.

Consider 1.5.17 and suppose that A, B, C are true; X, Y, Z are false; and P and Q are unknown.

1.5.17 P C A

If P were true, then the truth value of 1.5.17 would be true.

P C A

1 1 1
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If P were false, then 1.5.17 would be false.

P C A

0 0 1

Since the truth value of 1.5.17 depends on the truth value of P, it too is unknown.  Sometimes, in

contrast, we can determine the truth value of a complex proposition even when the truth values of one or

more of the component propositions is unknown.

1.5.18 P w A

If P is true, then 1.5.18 is true.

P w A

1 1 1

If P is false, then 1.5.18 is true too!

P w A

0 1 1

The truth value of 1.5.18 is true in both cases.  In our bivalent logic, these are the only cases we

have to consider.  Thus, the value of that statement is true, even though we didn’t know the truth value of

one of its component propositions. We have seen that the truth value of a complex proposition containing

a component proposition with an unknown truth value may be unknown and it may be true.  Sometimes

the truth value of such a complex proposition will come out false, like 1.5.19.

1.5.19 Q C Y

If Q is true, then 1.5.19 is false

Q C Y

1 0 0

If Q is false, then 1.5.19 is also false.

Q C Y

0 0 0

Since the truth value of the complex proposition is false in both cases, the value of 1.5.19 is false. 
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Lastly, we can have more than one unknown in a statement.  If there are two unknowns, we must

consider four cases: when both propositions are true, when one is true and the other is false, the reverse

case, and when both are false, as in 1.5.20.

1.5.20 (A e P) w (Q e A) where A is true

(A e P) w (Q e A)

1 1 1 1 1 1 1

1 1 1 1 0 1 1

1 0 0 1 1 1 1

1 0 0 1 0 1 1

Since all possible substitutions of truth values for ‘P’ and ‘Q’ in 1.5.20 yield a true statement, the

statement itself is true.

Exercises 1.5a.  Assume A, B, C are true and X, Y, Z are false.  Evaluate the truth values of each:

1. X w Z

2. A C -C

3. -C e Z 

4. (A C Y) w B

5. (Z / -B) e X

6. (A e B) w -X

7. (Z C -X) e (B w Y)

8. (B / C) e ( A e X)

9. (A C Z) w -(X C C)

10. (Z C A) w (-C C Y)

11. X C [A e (Y w Z)]

12. (B w X) e -(Y /C)

13. (-B e Z) C (A / X)

14. -(A / C) e (X C Y)

15. -(A w Z) / (X C Y)

16. (C e Y) w [(A C B) e -X]

17. [(C C Y) w Z] / [-B w (X e Y)]

18. [(X C A) e B] / [C w -(Z e Y)]

19. [(A C B) / X] e [(-Z C C) w Y]

20. [X e (A w B)] / [(X C Y) w (Z C C)]
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Exercises 1.5b.  Assume A, B, C are true; X, Y, Z are false; and P and Q are unknown.  Evaluate the truth

value of each complex expression.

1. Q C -Q

2. Q e B

3. P C -C

4. P / -P

5. P w (X C Y)

6. -(Z C A) e P

7. Q w -(Z C A)

8. (P e A) C (Z w B)

9. (Q C C) e (X w A)

10. -{[(Y C B) w Z] e P}

11. (C w X) e (Q w A)

12. [Q C (B / C)] C -Y

13. (-Z e X) C (P C -B)

14. -(Q e C) w (Z C -X)

15. [(A w X) e (Y C B)] / -Q

16. -(A w P) / [(B C X) e Y]

17. -P e [-(A C B) w (Z C Y)]

18. (Q C Z) e -[A w (X / C)]

19. (Q C X) / [(A w -Z) e Y]

20. [(P C Y) w -B] / {-A e [(C w X) C Z]}

Exercises 1.5c.  As in Exercises 1.5b, assume A, B, C are true; X, Y, Z are false; and P and Q are

unknown.  Evaluate the truth value of each complex expression.

1. (P C Q) e (X w A)

2. (Q e P) C (Z w -Y)

3. (P C Z) e (Q w A)

4. (P w Q) w (-A / Y)

5. -{[P e (Q e C)] C Z}

6. (Q C P) w (-Q w -P)

7. [(Q e (P e Z)] w -(-X w C)

8. {Z e [P e (Q e A)]} e (X C Q)

9. [(Q e B) C (X w -Z)] / [P e (Q e -Y)]

10. -{[(P e A) C X] / [(Q w -Q) e -B]}
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§1.6. Truth Tables for Propositions

As we saw in §1.5, when we are given a complex proposition and we know the truth values of the

component propositions, we can calculate the truth value of the longer statement.  When we are given a

complex proposition, and at least some of the truth values of the component propositions are unknown,

sometimes we can determine the truth value of the complex proposition.  But, sometimes the best we can

do is to describe how the truth value of the whole varies with the truth value of its parts.  We can

construct truth tables for any proposition, with any number of component propositions of unknown truth

values, using the basic truth tables.  Truth tables summarize the distributions of all possible truth values of

component propositions.

We can use truth tables to help us characterize complex propositions.  Some complex

propositions have interesting properties.  Also, knowing the relations among the truth conditions of

different complex propositions can also be useful.  Most importantly, we can also use truth tables to

separate valid from invalid arguments, the central task of this book.

We construct truth tables for wffs of PL in three steps.

Step 1. Determine how many rows we need.

Step 2. Assign truth values to the component variables.

Step 3. Work inside out, placing the column for each letter or connective directly beneath

the letter or connective, until we complete the column under the main operator.

For Step 1, recall that the number of rows of a truth table is a function of the number of variables

in the wff.

1 variable: 2 rows

2 variables: 4 rows

3 variables: 8 rows

4 variables: 16 rows

n variables: 2  rowsn

For Step 2, it is conventional to start truth tables in a systematic way.  For an example of a two-

row truth table, consider the truth table for ‘P e P’.

P e P

1 1 1

0 1 0

For an example of a four-row truth table, consider 1.6.1

1.6.1 (P w -Q) C (Q e P)’
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(P w - Q) C (Q e P)

1 1 1 1

1 0 0 1

0 1 1 0

0 0 0 0

Note that we use the same values we assign to P in the first column for P in the last column, and

similarly for Q.  All four row truth tables begin with this set of assignments.  Let’s see how to continue

this example, in stages.  First complete the columns under the tilde.

(P w - Q) C (Q e P)

1 0 1 1 1

1 1 0 0 1

0 0 1 1 0

0 1 0 0 0

Then we can complete the columns under  the disjunction and the conditional.

(P w - Q) C (Q e P)

1 1 0 1 1 1 1

1 1 1 0 0 1 1

0 0 0 1 1 0 0

0 1 1 0 0 1 0

Finally, we can complete the truth table by completing the column under the main operator, the

conjunction, using the columns for the disjunction and the conditional:

(P w - Q) C (Q e P)

1 1 0 1 1 1 1 1

1 1 1 0 1 0 1 1

0 0 0 1 0 1 0 0

0 1 1 0 1 0 1 0

Thus, 1.6.1 is false when P is false and Q is true, and true otherwise.  Note that you only have to

write out the truth table once, like the last one in this demonstration.
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Here is the start to an eight-line truth table, for 1.6.2, which we will complete later.

1.6.2 [(P e Q) C (Q e R)] e (P e R)

[(P e Q) C (Q e R)] e (P e R)

1 1 1 1 1 1

1 1 1 0 1 0

1 0 0 1 1 1

1 0 0 0 1 0

0 1 1 1 0 1

0 1 1 0 0 0

0 0 0 1 0 1

0 0 0 0 0 0

In general, to construct a truth table:

Method for Constructing Truth Tables

The first variable (reading from left to right, is assigned 1 in the top half and assigned 0

in the bottom half.

The second variable is assigned 1 in the top quarter, 0 in the second quarter, 1 in the third

quarter, and 0 in the bottom quarter.

The third variable is assigned 1 in the top eighth, 0 in the second eighth...

...

The last variable is assigned alternating instances of 1 and 0.

Thus, in a 128 row truth table (7 variables), the first variable would get 64 1s and 64 0s, the

second variable would get 32 1s, 32 0s, 32 1s, and 32 0s, the third variable would alternate 1s and 0s in

groups of 16, the fourth variable would alternate 1s and 0s in groups of 8s... and the seventh variable

would alternate single instances of 1s and 0s.  It does not matter which variables we take as first, second,

third, etc., but it is conventional that we work from left to right.  Remember that every instance of the

same variable letter gets the same assignment of truth values.

The technical work of constructing truth tables for propositions of any length allows us to classify

individual propositions and their relations in a variety of interesting ways.  For individual propositions,

we can use truth tables to characterize the difference between logical necessity and logical contingency.  

Necessity and contingency are complicated concepts, so let’s take a moment to characterize them.

 Necessity is easily defined in terms of possibility: a proposition is necessary if it is not possible

for it to be false.  A proposition is possible if it is not necessarily false.  A proposition is contingent if it is

possible, but not necessary.
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To get a sense of what we mean by these terms, consider 1.6.3 - 1.6.5.

1.6.3 Aristotle distinguished four kinds of causes.

1.6.4 Descartes defended mind-body materialism.

1.6.5 2 + 2 = 4

1.6.6 2 + 2 = 5

1.6.3 and 1.6.5 are true; 1.6.4 and 1.6.6 are false.  But, 1.6.5 is often taken to be necessarily true

whereas 1.6.3 is usually seen as merely contingently true.  Similarly, 1.6.5 is usually called contingently

false whereas 1.6.6 may be taken as necessarily false.

The concepts of necessity and possibility, though clearly inter-related, are philosophically

contentious.  The claim that a proposition is necessary is often understood as the claim that it is true in all

possible worlds, but that doesn’t help very much.  It is difficult to know how we acquire and justify

beliefs about other possible worlds.  Moreover, philosophers distinguish a variety of different kinds of

necessity, among them are different kinds of logical necessity, metaphysical necessity, and physical

necessity.

Fortunately, there is a kind of logical necessity which avoids most philosophical concerns about

our access to possible worlds and which we can use truth tables to characterize.  We can use truth tables

to make distinctions among tautologies, contingencies, and contradictions.  Consider again the truth table

for ‘P e P’.

P e P

1 1 1

0 1 0

‘P e P’ is a tautology, or a statement that is true in every row of the truth table.  Two common

laws of logic describe tautologies.

1.6.7 The Law of the Excluded Middle: any statement of the form ‘á w -á’ is a

tautology.

1.6.8 The Law of Non-Contradiction: any statement of the form ‘-(á C -á)’ is a

tautology.

Tautologies are the theorems of propositional logic.  They are sometimes called logical truths. 

1.6.9 is a tautology in English. 

1.6.9 Either the Phillies will win the World Series this year, or they will not.

Not all necessary truths are tautologies.  1.6.5 is not a logical truth, even if it is necessarily true. 

For most, perhaps all, necessary truths, there are some philosophers who claim that they are really

contingent.  But the logical truths are among the least controversial.  All tautologies are logically

necessary.  1.6.10 is a longer tautology
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1.6.10 [(P e Q) C (Q e R)] e (P e R)

[(P e Q) C (Q e R)] e (P e R)

1 1 1 1 1 1 1 1 1 1 1

1 1 1 0 1 0 0 1 1 0 0

1 0 0 0 0 1 1 1 1 1 1

1 0 0 0 0 1 0 1 1 0 0

0 1 1 1 1 1 1 1 0 1 1

0 1 1 0 1 0 0 1 0 1 0

0 1 0 1 0 1 1 1 0 1 1

0 1 0 1 0 1 0 1 0 1 0

Only a small portion of the sentences of propositional logic are tautologies.  1.6.11 is a

contingency, or a statement that may or may not be true.  It is true in at least one row of the truth table.  It

is false in at least one row.  The truth value of a contingency depends on the values of its component

premises.

1.6.11 P w -Q

P w - Q

1 1 0 1

1 1 1 0

0 0 0 1

0 1 1 0

While most wffs are contingent, some are false in every row.  We call such statements

contradictions.  1.6.12 and 1.6.13 are contradictions.

1.6.12 P C -P

P C - P

1 0 0 1

0 0 1 0
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1.6.13 (-P e Q) / -(Q w P)

(- P e Q) / - (Q w P)

0 1 1 1 0 0 1 1 1

0 1 1 0 0 0 0 1 1

1 0 1 1 0 0 1 1 0

1 0 0 0 0 1 0 0 0

In addition to helping us characterize individual propositions, truth tables give us tools to

characterize relations among two or more propositions.  Propositions can have the same values or

opposite values.  Consider the tautology 1.6.14.

1.6.14 (A w B) / (-B e A)

(A w B) / (- B e A)

1 1 1 1 0 1 1 1

1 1 0 1 1 0 1 1

0 1 1 1 0 1 1 0

0 0 0 1 1 0 0 0

We can eliminate the biconditional and consider the two remaining portions, the left side and the

right side, as separate statements.  The resulting propositions, 1.6.15 and 1.6.16, are logically equivalent:

two or more statements with identical truth values in every row of the truth table.

1.6.15 A w B

1.6.16 -B e A

A w B - B e A

1 1 1 0 1 1 1

1 1 0 1 0 1 1

0 1 1 0 1 1 0

0 0 0 1 0 0 0

The concept of logical equivalence has many uses.  For one, notice that the biconditional is a

superfluous connective, since any statement made with the biconditional could be made, in slightly more

complex form, with a conjunction of two conditionals.  That is, a statement of the form ‘á / â’ is

logically equivalent to a statement which uses only other connectives, a statement of the form ‘(á e â) C

(â e á)’.
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á / â (á e â) C (â e á)

1 1 1 1 1 1 1 1 1 1

1 0 0 1 0 0 0 0 1 1

0 0 1 0 1 1 0 1 0 0

0 1 0 0 1 0 1 0 1 0

Other connectives can be shown to be superfluous, in similar ways.  When constructing

languages for propositional logic, we have choices of which connectives to use and how many

connectives to use.  The study of the relations among the different connectives is a topic in metalogic

which I discuss in Chapter 4, §5.

In contrast to logically equivalent statements, 1.6.17 and 1.6.18 are contradictory: two statements

with opposite truth values in all rows of the truth table.

1.6.17 A w -B

1.6.18 B C -A

A w - B B C - A

1 1 0 1 1 0 0 1

1 1 1 0 0 0 0 1

0 0 0 1 1 1 1 0

0 1 1 0 0 0 1 0

Notice that the biconditional connecting the two contradictory statements is a contradiction. 

Most pairs of statements, like 1.6.19 and 1.6.20, are neither logically equivalent nor contradictory.  

1.6.19 E e D

1.6.20 -E C D

E e D - E C D

1 1 1 0 1 0 1

1 0 0 0 1 0 0

0 1 1 1 0 1 1

0 0 0 1 0 0 0

We can see that 1.6.19 and 1.6.20 are not contradictory in rows 2, 3, and 4.  We can see that they

are not logically equivalent in row 1.  But, an interesting property of this pair of statements is that they are

consistent: there are values of the component variables that will make both propositions true.  1.6.19 and

1.6.20 are both true in row 3.  A person who asserts propositions of both forms can be making consistent
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statements.  It depends on the interpretations of the variables E and D.  If two statements are neither

logically equivalent nor contradictory, they may be consistent or inconsistent.

1.6.21 Consistent propositions can be true together.  There is at least one row of the

truth table in which two or more propositions are all true.

1.6.22 Inconsistent pairs of propositions are not consistent.  There is no row of the truth

table in which both statements are true.

1.6.23 and 1.6.24 are an inconsistent pair.

1.6.23 E C F

1.6.24 -(E e F)

E C F - (E e F)

1 1 1 0 1 1 1

1 0 0 1 1 0 0

0 0 1 0 0 1 1

0 0 0 0 0 1 0

Notice that the conjunction of two inconsistent statements is a self-contradiction.  The difference

between two sentences which are inconsistent and two sentences which are contradictory is subtle.  In

both cases, the pair of sentences can not be true together.  The difference is whether the pair can be false

in the same conditions.  Contradictory pairs always have opposite truth values.  Inconsistent pairs may

have truth conditions in which they are both false.  When we are making assertions, and aiming at the

truth, it is generally just as bad to make inconsistent assertions as it is to make contradictory assertions.

When comparing two propositions, first look for the stronger conditions: logical equivalence and

contradiction.  Then, if these fail, look for the weaker conditions: consistency and inconsistency.
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Exercises 1.6a.  Construct truth tables for each of the following propositions.

1. A e -A

2. B e (-B e B)

3. (C C -C) e C

4. (D w -D) / D

5. -E e F

6. G / -H

7. I C (J w I)

8. (K / L) e L

9. (M C N) w -M

10. -O w (P e O)

11. (Q e R) / (R e Q)

12. (S w T) C -(T e S)

13. (U C -V) e (V w U)

14. -[(W w X) C -X] e W

15. [(-Y C Z) e Y] w (Y /Z)

16. (A / -B) e [(B w -B) C A]

17. (C w D) e E

18. (F C G) / H

19. -(I w J) C K

20. [L e (M w N)] / L

21. [-O C (P eO)] w Q

22. (-R w S) C (-T e R)

23. [U e (V e W)] C (V w W)

24. [-X / (Y C Z)] e (X w Z)

25. (A e B) w (C / D)

26. (E C -F) e (G w H)

27. [I e (J C K)] w (L / I)

28. [(-M C N) w (O e P)] / M

Exercises 1.6b.  Classify each proposition as tautologous, contingent, or contradictory.

1. A w -A

2. B / -B

3. -C e -C

4. (D e -D) w D

5. E / (-E e E)

6. (-F e F) C F

7. (G C -G) e (G w -G)

8. B / (A C -B)

9. (C w D) C -(D e C)

10. (E e F) / -(F w -E)

11. (G C -H) w (H e -G)

12. -(I C J) / (-I w -J)

13. (K e L) / (K C -L)

14. (-M C N) C (N e M)

15. (-P / Q) C -[Q e (P w Q)]

16. (R w S) / (-R C -S)

17. (T e U) w (U e T)

18. -C / (A w -B)

19. (D e F) w (E e D)

20. (G C H) e (G w I)

21. (J C -K) C -(L w J)

22. (N w O) e (M C O)

23. -(P C Q) w (Q e R)

24. (T / S) e [-U C (S C T)]

25. -{[(X C Y) e Z] / [X e (Y e Z)]}

26. [-A w (-B C -C)] / [(A C B) w (A C C)]

27. [D w (E C F)] / [(D w E) C (D w F)]

28. (G w H) w (I w J)

29. [K C (L e M)] w (N / K)

30. [P e (Q C R)] e [-S / (P w R)]
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Exercises 1.6c.  Are the following pairs of statements logically equivalent or contradictory?  If neither,

are they consistent or inconsistent?

1. A e B and B e A

2. -(C C D) and C w D

3. -E e -F and E w F

4. G e H and -H C G

5. I w J and -I C -J 

6. K / L and -(L e K)

7. -(M w N) and -M C -N

8. -O e P and O w P

9. -Q / R and Q C R

10. (S w T) C -S and T e S

11. (U / X) w -U and -X e -U

12. -Y e Z and -Z e Y

13. -(A C B) and -A e B

14. C e (D C C) and -D C C

15. (E w F) C E and - (E w F)

16. (G C H) w -G and -H e (G / H)

17. I w (J C -J) and (J / -I) C J

18. K C (L e K) and (K w L) / -K

19. (-M C -N) / N and (N w M) C -M

20. (O w P) e O and -O / (P C O)

21. (Q w R) C S and (Q e S) C R

22. T w (U C W) and (T w U) C (T w W)

23. (X C Y) w Z and (-X w -Y) C -Z

24. (A C B) e C and A e (B e C)

25. (D / E) e F and (D w F) C -E

26. -(G w H) C I and (I e G) C H

27. (J / K) C L and [(-L w -K) C (L w K)] w -L

28. (M e N) w (N C -O) and (M C -N) C (-N w O)

29. P w (Q w R) and (P w Q) w R

30. S e (T / U) and [(T w U) C S] e -T

31. (X C Y) e Z and (X C Y) C -Z

32. (A e B) C C and (-B e -A) C C

33. (-D e -E) w (F / E) and (-D C E) C [(-F w -E) C (F w E)]

34. [(G w H) e I] C [-I w H] and [(G w H) C -I] w (I C -H)

35. (-K e L) C -M and M / (L w K)
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§1.7. Valid and Invalid Arguments

The central task of this book is to characterize a notion of logical consequence, of which

arguments are valid.  We can use truth tables to define validity in PL.  Contrast the arguments 1.7.1 and

1.7.2.

1.7.1 1. If God exists then every effect has a cause.

2. God exists.

So, every effect has a cause.

1.7.2 . 1. If God exists then every effect has a cause.

2. Every effect has a cause.

So, God exists.

1.7.1 is valid.  There is no way for the premises to be true while the conclusion is false.  Whether

the premises are true, whether 1.71 is a sound argument, is a separate question.  1.7.1 has the form 1.7.3.

1.7.3 á e â 

á / â

1.7.3 is known as Modus Ponens.  Note that we write the premises on sequential lines, and the

conclusion on the same line as the final premise, following a single slash.  In 1.7.3, we are using

metalinguistic variables (Greek letters) to indicate that any consistent substitution of those variables by

symbols of PL is a valid argument.

1.7.2 is invalid, and has the form 1.7.4.

1.7.4 á e â

â / á

Arguments of the form 1.7.4 commit the fallacy of affirming the consequent.  The conclusion of

1.7.2 fails to follow from the premises.  It is logically possible for its premises to be true while its

conclusion is false.  This fallacy is a formal result having nothing to do with the content of the

propositions used in the argument.

We need a rigorous method for distinguishing valid argument forms like 1.7.3 from invalid ones

like 1.7.4.  The truth table method for determining if an argument is valid is simple.

Method of Truth Tables to Test for Validity

Step 1: Line up premises and conclusion horizontally, separating premises with a single slash and

separating the premises from the conclusion with a double slash.

Step 2: Construct truth tables for each premise and the conclusion, using consistent assignments

to component variables.

Step 3: Look for a counterexample: a row in which all premises are true and the conclusion is

false.

If there is a counterexample, the argument is invalid.  Specify a counterexample.

If there is no counterexample, the argument is valid. 

Recall that in a valid argument, if the premises are true then the conclusion must be true.  This

definition says nothing about what happens if the premises are false.  An invalid argument is one in which



Marcus, What Follows, page 51

it is possible for true premises to yield a false conclusion.  By focusing on valid arguments, we can make

sure that if all our premises are true, our conclusions be true as well.

Let’s examine the argument 1.7.5 to determine whether it is valid.

1.7.5 P e Q

P / Q

P e Q /  P // Q

1 1 1 1 1

1 0 0 1 0

0 1 1 0 1

0 1 0 0 0

Notice that in no row are the premises true and the conclusion false.  There is no counterexample. 

1.7.5 is a valid argument.  In contrast, both 1.7.6 and 1.7.7 are invalid arguments.  To show that they are

invalid, we specify a counterexample.

1.7.6 P e Q

Q / P

P e Q / Q // P

1 1  1 1 1

1 0 0 0 1

0 1 1 1 0

0 1 0 0 0

The third row of 1.7.6 is a counterexample.  The argument is shown invalid when P is false and Q

is true. Some arguments will have more than one counterexample; demonstrating one counterexample is

sufficient to show that an argument is invalid.

1.7.7 P e (Q e P)

-P / Q

P e (Q e P) / - P // Q

1 1 1 1 1 0 1 1

1 1 0 1 1 0 1 0

0 1 1 0 0 1 0 1

0 1 0 1 0 1 0 0
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In 1.7.7, row 4 is a counterexample.  The argument is shown invalid when P is false and Q is

false.

Exercises 1.7.  Construct truth tables to determine whether each argument is valid.  If an argument is

invalid, specify a counterexample.

1. A e -A

-A / A

2. --B w (-B e B) / B

3. C w D

-D / -C

4. E w F

-(E C -F) / E / F

5. G / H

-H / -G

6. -I e (-I e I)

-J e (-J e J) / I C J

7. (K C L) w (K C -L)

-K / L

8. M / -N

M w N

M / -N e N

9. -P e Q

Q e P / -P

10. R e S

S w T / R e T

11. X C -Y

Y w Z / -Z

12. -(A C B)

B e C / A

13. D w E

-D C -F / -(E C F)

14. G / H

H C -I / -(I C G)

15. J e -K

K e L / -(L C J)

16. M C -N

O e P

P w N / -M

17. Q e R

S w T

T / R

18. -W e (X w Y)

Y C Z

-(Z e X) / W / Y

19. -A C (B w C)

C e A

B e D / A e -D

20. E C F

G e (H w -E)

-F w G / H
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§1.8. Indirect Truth Tables

We can use the truth table method for any argument, to determine its validity.  This gives us a

mechanical procedure for determining counterexamples.  But the method becomes unwieldy as the

number of variables in an argument grows.  With merely five variables, for example, a truth table is 32

lines.  The truth table for an argument which contains ten propositional variables would require 1024

lines.

Fortunately, there is a shortcut method for constructing counterexamples.  This method will also

help for determining whether a set of propositions is consistent.

To show that an argument is valid, you have to show that there is no row of the truth table with

true premises and a false conclusion.  We have to examine every row.  But we only need one row in order

to demonstrate that an argument is invalid: a counterexample.  Thus, to determine whether an argument is

valid or invalid, we can try to construct a counterexample.  If we find a counterexample, then we know

the argument is invalid.  If there are no counterexamples, then the argument is valid.

Method of Indirect Truth Tables for Validity

Step 1. Assign values to make the conclusion false.

Step 2. Try to make all premises true.

If Steps 1 and 2 are possible, then the argument is invalid; specify the counterexample.

If Steps 1 and 2 are impossible, then the argument is valid.

Steps 1 and 2 may be completed in any order.  If there is a counterexample, this indirect method

will be able to find it.  But, we have to make sure to try all ways of assigning values to the component

propositions.

1.8.1 is an invalid argument.  We will use the indirect method to find a counterexample.

1.8.1 G / H

G / -H

To show that 1.8.1 is invalid, first write it out, as you would a normal truth table for an argument.

G / H / G /

/

- H

Next, we can assign the value true to H, in order to make the conclusion false.

G / H / G /

/

- H

0 1

Carry this value over to any other H in the argument.
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G / H / G /

/

- H

1 0 1

Assign a value to G which makes the premises true.

G / H / G /

/

- H

1 1 1 1 0 1

1.8.1 is thus invalid since there is a counterexample when G is true and H is true.  Note that an

argument is either valid or invalid.  If there is at least one counterexample, the argument is invalid.  It is

not merely invalid on that assignment of truth values; it is always invalid.

1.8.2 is a valid argument.  We will not be able to construct a counterexample.

1.8.2 C e (D e E)

D e (E e F) / C e (D e F)

The only way to make the conclusion false is to assign true to C and to D, and false to F.

C e (D e E) / D e (E e F) // C e (D e F)

  1 0 1 0 0 

Carry these values over to the premises.

C e (D e E) / D e (E e F) // C e (D e F)

1 1 1 0 1 0 1 0 0 

In order to make the first premise true, E must also be true.

C e (D e E) / D e (E e F) // C e (D e F)

1 1 1 1 1 1 1 0 1 0 1 0 0 

But now the second premise is false.  If we tried to make the second premise true, by making E

false, the first premise would come out false.  There was no other way to make the conclusion false.  So

there is no counterexample.  1.8.2 is thus valid.

In some arguments, there is more than one way to make a conclusion false or to make premises

true.  You may have to try more than one.  Once you arrive at a counterexample, you may stop.  But, if

you fail to find a counterexample, you must keep going until you have tried all possible assignments.

Some arguments. like 1.8.3, have multiple counterexamples.  Remember, you only need one to

demonstrate the invalidity of an argument.
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1.8.3 I e K

K e J / I C J

There are three ways to make the conclusion of 1.8.3 false.

I e K / K e J // I C J

1 0 0

0 0 1

0 0 0

We can try them in order.  On the first assignment, there is no way to assign a truth value to K

which makes the premises true.

I e K / K e J // I C J

1 ? ? 0 1 0 0

0 0 1

0 0 0

We must move on to the second option.

I e K / K e J // I C J

1 0 0

0 1 0 0 1

0 0 0

Here, we can assign either value to K and find a counterexample.  1.8.3 is shown invalid when I

is false, J is true, and K is either true or false.  Since we found a counterexample in the second option,

there is no need to continue with the third option.

1.8.4 requires more work.

1.8.4 T e (U w X)

U e (Y w Z)

Z e A

-(A w Y) / -T
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Start with the conclusion, making T true in order to make its negation false, carrying that

assignment into the first premise.

T e (U w X) / U e (Y w Z) / Z e A / - (A w Y) // - T

1 0 1

From the first premise,‘U w X’ must be true, but there are three ways to assign values to make it

so. Similarly, there are multiple ways to assign values for the second and third premises.  But in the fourth

premise, there is only one possible assignment

T e (U w X) / U e (Y w Z) / Z e A / - (A w Y) // - T

1 1 0 0 0 0 1

Let’s carry these assignments over.

T e (U w X) / U e (Y w Z) / Z e A / - (A w Y) // - T

1 0 0 1 0 0 0 0 1

We know by inspecting the third premise that Z must also be false.

T e (U w X) / U e (Y w Z) / Z e A / - (A w Y) // - T

1 0 0 1 0 1 0 0 0 0 1

Carrying this assignment over, ‘Y w Z’ has been made false, and so U must be made false, also.

T e (U w X) / U e (Y w Z) / Z e A / - (A w Y) // - T

1 0 1 0 0 0 0 1 0 1 0 0 0 0 1

We can carry the value of U to the first premise.

T e (U w X) / U e (Y w Z) / Z e A / - (A w Y) // - T

1 0 0 1 0 0 0 0 1 0 1 0 0 0 0 1

We now are constrained to make X true, in order to make the first premise true.

T e (U w X) / U e (Y w Z) / Z e A / - (A w Y) // - T

1 1 0 1 1 0 1 0 0 0 0 1 0 1 0 0 0 0 1

The counterexample is thus constructed.  The argument is shown invalid when T and X are true;

and U, Y, Z, and A are all false.
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Using indirect truth tables to determine whether a set of propositions is consistent

The most important use of the indirect truth table method is in determining whether an argument

is valid.  An argument is valid if there is no assignment of truth values to the component propositional

variables such that the premises come out true and the conclusion comes out false.  Given our bivalent

logic, that condition for validity is the same as testing whether the negation of the conclusion is consistent

with the premises.  For, a set of propositions is consistent when there is a set of truth values which we can

assign to the component variables such that all the propositions come out true.  In other words, we can use

the same method for determining whether a set of propositions is consistent as we used for determining

whether an argument is valid.

Two or more propositions are consistent if there is at least one line of the truth table in which they

are all true.  If we can find an assignment of truth values to component propositions which makes all the

main operators of the propositions in a set true, then we have shown them consistent.  This assignment

will be called a consistent valuation.  If no consistent valuation is possible, then the set is inconsistent.

Method of Indirect Truth Tables for Consistency

Assign values to propositional variables to make each statement true.

If you can make each statement true, then the set is consistent.  Provide a consistent

valuation.

If it is not possible to make each statement true, then the set is inconsistent.

To determine if a set of propositions is consistent, line them up, just as we lined up the premises

and conclusion in evaluating arguments.  We only use single slashes between the propositions.  Since a

bare set of sentences has no conclusion, the order makes no difference.  We are trying to find a valuation

which makes all propositions true.  Let’s examine the set of propositions 1.8.5 to see if they are

consistent.

1.8.5 (A C B) e F

B e (D w -E)

F e (E w -D)

A C E

(A C B) e F / B e (D w - E) / F e (E w - D) / A C E

Let’s start with the last proposition, since there is only one way to make it true

(A C B) e F / B e (D w - E) / F e (E w - D) / A C E

1 1 1

Carry those values through the rest of the set, and evaluate the negation in the second proposition.

(A C B) e F / B e (D w - E) / F e (E w - D) / A C E

1 0 1 1 1 1 1
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There are no other obvious, forced moves.  The antecedent in the first proposition may be either

true or false, depending on the value given to B.  The consequent in the second may be either true or

false, depending on the value given to D.  The consequent in the third proposition, and thus the whole

third proposition, will be true, but that does not determine the values of either F or D.

(A C B) e F / B e (D w - E) / F e (E w - D) / A C E

1 0 1 1 1 1 1 1 1

We must arbitrarily choose a next place to work.  I’ll choose to start with B; we may assign either

a 1 or a 0.

(A C B) e F / B e (D w - E) / F e (E w - D) / A C E

1 1 1 0 1 1 1 1 1 1 1

1 0 0 0 1 1 1 1 1 1 1

We’ll try the first line, first. Assigning 1 to B forces us, in the first proposition to assign 1 to F.

(A C B) e F / B e (D w - E) / F e (E w - D) / A C E

1 1 1 1 1 1 0 1 1 1 1 1 1 1 1

1 0 0 0 1 1 1 1 1 1 1

Then, in the second proposition, we must assign 1 to D.

(A C B) e F / B e (D w - E) / F e (E w - D) / A C E

1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1

1 0 0 0 1 1 1 1 1 1 1

We have thus found a consistent valuation.  We need not return to the problem to assign 0 to B;

all we need is a single valuation to show the set consistent.  The set of propositions is shown consistent

when all component variables are assigned 1.  There are other possible consistent valuations.

Just as an argument is invalid if there is at least one counterexample, a set of propositions is

consistent if there is at least one consistent valuation.  If there is no consistent valuation, the set is

inconsistent.

We will use an extended version of this indirect truth table method for determining

counterexamples to arguments again in Chapter 3, in first-order logic.  For now, there are two salient

applications of the method.  When determining if an argument is valid, the method, if used properly, will

generate a counterexample if there is one.  For sets of sentences, the method will yield a consistent

valuation.  Make sure to work until you have exhausted all possible assignments of truth values to the

simple, component propositions.
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Exercises 1.8a.  Determine whether each of the following arguments is valid.  If invalid, specify a

counterexample.

1. A e (B w C)

C C (-D e A)

E C B / E C A

2. F / (G w H)

I e (J e F)

(I C G) w H / J e G

3. M C -(K / O)

(L w N) e O

M w -K / L w O

4. P e -Q

Q e (S C T)

-T w (P e R) / Q e R

5. (Z C V) e (U w W)

X w (-Y / W)

Z C Y / -U

6. A C B

B e C

-B w (D e -C) / -D

7. D w -E

(F C G) C -H

D e (H w I)

-I / F C -E

8. J e (K C -L)

-L / (N e M)

J w -N

K C M / -N

9. -(P e Q)

R / (S w -T)

P e R

Q w T / S w O

10. (U C -V) w W

W / -V / -U

11. -Y / (-X C Z)

Z e Y / Z e X

12. B C (D w C)

D e (A w E)

-E w (B C C) / (A e E) w C

13. (F w G) / (H C J)

(I e H) C (J w G)

-G / I e F

14. K e (M e P)

P C -(N w L)

O e (K / N) / M

15. Q e (T C S)

R / (U w T)

-[S e (T e Q)] / -U C S

16. Y e (Z / X)

Y C -W

W e (Y w Z) / -(X e -W)

17. (B e A) C E

-F C (D / C)

C e (E C B)

-A / D

18. G e (H w K)

J w -H

I w (K / J)

-I / H w G

19. L e (M / -N)

(M C O) w (-P C O)

O w L 

-M / N

20. R e [U w (S w Q)]

R C -S

-U / T / T e Q

21. V e (Z C W)

X w -Y

Z e Y

V / Y / -W
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22. B C (C e E)

B e (A C F)

D e (-B w C)

E e D / A / [F C (E e

C)]

23. G e (J C -K)

(I e H) C G

H e (K w I)

J C -I / I w K

24. N C (Q e P)

M w -L

L e Q

P w M / L / M

25. U C -R

(T w -S) / U

R w S

T e (-R w V) / -V

26. E C F

E e G

-G C -H / F / H

27. J w M

L C M

K e L / -K e J

28. N e O

O C P

P / Q / -(Q w N)

29. T / S

S C U

R e U / R w T

30. Z w (X C Y)

W / V

Z C V / W e (X w Y)

31. N w O

N e (Q e O)

(P w Q) w R

R e -R / -O e P

32. S e (V C T)

U w R

-S / (R w T) / T e U

Exercises 1.8b.  Determine, for each given set of propositions, whether it is consistent.  If it is, provide a

consistent valuation.

1. A w B

B C -C

-C e D

D / A

2. B C (C e A)

D w (E C F)

F e (C w D)

E C -A

3. D e F

F / (A C E)

D C (B w C)

-A

E w C

4. F C (A e D)

E w -B

-[C e (D w F)]

A w (B C D)

E e A

5. -A C -E

(A w B) e (D C F)

C e ( E e D)

-A C (C w B)

6. -[A e (F C B)]

B C (E C -D)

E / F

D e (C C A)
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7. C / (D w B)

D C (C e A)

-A C (E w F)

F e (B C A)

8. D e (-A C -F)

E w (-B w C)

E e C

A C (-B / D)

9. B w (F C D)

E / B

-E C -F

D e (A e C)

(C C E) w A

10. F C (A / -D)

(D w B) e E

(A w B) / (D e F)

(F C A) e -B

11. (O w -P) e -Q

R C (-S w T)

O C -(R e Q)

P e S

12. S e [O C (-P C R)]

S w (T C -O)

R e (P / T)

-S w R

13. P e [Q e (R e O)]

-S C T

R / (T C P)

-(O w S)

14. -(T C S) C (-O e R)

S C (O w -P)

R e (Q C P)

T w -O

15. T e (R C -S)

(Q w R) / (P C T)

T w -Q

S C (R w P)

16. (-J w -K) C L

-I w (M w N)

L e (I C J)

(J C M) e -N

17. (L C N) w I

L / -K

K e (I / -M)

(J w K) C -N

18. -(M e K)

(J C L) e K

(J w M) C (M e J)

K w L

19. L w (K C J)

J e (M C N)

M e (I w J)

-[(N e K) C L]

20. -(J e N)

N e (M C -L)

K / -I

J C ( K w M)

I C L
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Chapter 2: Inference in Propositional Logic

§1: Rules of Inference 1

We have used truth tables, including the indirect method, to separate valid arguments from

invalid arguments.  Our work was guided by a semantic definition of validity: an argument is valid if

there are no assignments of truth values to the propositional variables on which the premises come out

true and the conclusion comes out false.  The full truth-table method gets increasingly and prohibitively

arduous as the complexity of an argument grows.  The indirect method, while pleasant and effective,

requires ingenuity and can be just as laborious as the complete truth-table method.  More importantly,

while semantic tests of validity are effective in propositional logic, in more sophisticated logical systems

they do not suffice to determine valid arguments.  We should explore other methods.

This chapter explores one salient alternative method for determining valid inferences: the method

of natural deduction.  A natural deduction is sometimes called a proof or a derivation.  Proofs, in a formal

sense, are sequences of wffs every member of which either is an assumption or follows from earlier wffs

in the sequence according to specified rules.  These rules comprise a system of inference.  Systems of

inference are constructed first by specifying a language and then by adding rules governing derivations:

how to get new wffs from the old ones.  In addition, in some formal systems, some basic axioms are

given.  In formal systems of propositional logic, these axioms are ordinarily tautologies.  Since

tautologies are true in all cases, they can be added to any derivation.  We will not use any axioms.

Just as we named our languages, we can also name our systems of inferences.  Since we are

mainly using only a single system of inference for each language, I won’t bother to confuse us with more

names than we need.

For natural deductions, our formal system will use the language of propositional logic, eight rules

of inference and ten rules of equivalence.  These rules are chosen so that they are complete: every valid

argument will be provable using our rules.  Our rules are also chosen arbitrarily, in the sense that there are

many different complete systems of rules, indeed infinitely many.  One can devise deductive systems with

very few rules, though the resulting proofs become very long.  One can devise systems so that proofs

become very short, but the required number of rules can be unfeasibly large.  We choose a moderate

number of rules (eighteen) so that there are not too many to memorize and the proofs are not too long.

The rules we choose are defined purely syntactically, in terms of their form, but they are justified

semantically.  A rule of inference must preserve truth: given true premises, the rules must never yield a

false conclusion.  A rule preserves truth if every argument of its form is valid.  We can prove that each of

the rules of inference preserves truth using the indirect truth table method.  We show that each rule of

equivalence preserves truth using truth tables as well.

Derivations begin with any number of premises and proceed by steps to a conclusion.  A

derivation is valid if every step is either a premise or derived from premises or previous steps using our

rules.  I introduce four rules of inference in this section, the remaining four in the next section, and the ten

rules of equivalence in the third and fourth sections of this chapter.

Let’s start to examine our first rules.  Observe that each of 2.1.1 - 2.1.3 are valid; we can use truth

tables to show that they are valid.

2.1.1 A e B

A / B

2.1.2 (E C I) e D

(E C I) / D

2.1.3 -G e (F C H)

-G / F C H
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2.1.1 - 2.1.3 share a common, valid form.  We can write this form using metalinguistic variables;

I will use Greek letters.

2.1.4 á e â

á / â Modus Ponens (MP)

This form of argument is called Modus Ponens, and abbreviated MP.  We can apply 2.1.4 in our

object language, PL, by constructing substitution instances of it.  A substitution instance of a rule will be

a set of wffs of PL that match, syntactically, the form of the rule.  A substitution instance of MP will

contain one wff whose main connective is a conditional and another which is precisely the antecedent of

that conditional.  The last wff of a substitution instance of MP will contain exactly the consequent of the

conditional statement as a new wff in a derivation.

Notice that any substitution instance of MP will yield a valid argument.  For, the only way to

provide a counterexample to such an instance would be on a line on which the main operator of the

conclusion were false and the main operator of the second premise were true.  Any such valuation would

make the first premise false and so make the inference valid.  (Remember, a counterexample requires true

premises and a false conclusion.)  

`Given that every substitution instance of MP will be valid, we can substitute simple or complex

formulas for á and â in 2.1.4 and be sure that the resulting deduction is valid.  2.1.5 is another example of

MP.

2.1.5 [(H w G) e I] e (K C -L)

[(H w G) e I] / (K C -L)

Similar arguments will show that the forms 2.1.6 - 2.1.7 are also valid.

2.1.6 á e â

-â / -á Modus Tollens (MT)  

2.1.7 á w â

-á / â Disjunctive Syllogism (DS)

2.1.8 á e â

â e ã / á e ã Hypothetical Syllogism (HS)

You can check that each form is valid by using truth tables on the metalinguistic forms.  For

example, in 2.1.8, if we try to make the conclusion false, we have to make á true and ã false.  Then, to

make the first premise true, we have to make â true; that makes the second premise false.  If we try to

make the second premise true, by making â false, then we make the first premise false.  In either case, we

can not construct a counterexample.  Thus, any substitution instance of HS will be valid.

For obvious reasons, we are mainly interested only in valid rules of inference.  But it is

sometimes useful to contrast the valid forms with invalid ones, like 2.1.9 and 2.1.10.  Again, we can

check them, using truth tables, or indirect truth tables.

2.1.9 á e â

â / á Fallacy of Affirming the Consequent

2.1.10 á e â Fallacy of Denying the Antecedent

-á / -â
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To show that 2.1.9 is invalid, we can assign false to á and true to â.  The premises turn out true

and the conclusion turns out false!  The same set of assignments provides a metalinguistic

counterexample for 2.1.10.  Any substitution instance of these forms will thus be invalid and we can

construct an object-language counterexample in the same way.

Let’s look at a couple of concrete instances to get an intuitive sense of the difference between

valid and invalid arguments.  Let ‘P’ stand for ‘I study philosophy’ and ‘Q’ stand for ‘I write papers’.  We

can write the conditional ‘P e Q’ as 2.1.11.

2.1.11 If I study philosophy, then I write essays.

From 2.1.11 and the claim that I study philosophy, Modus Ponens licenses the inference that I

write essays.  From 2.1.11 and the claim that I do not write essays, Modus Tollens licenses the inference

that I do not study philosophy.  These are valid inferences.  I would commit the fallacy of affirming the

consequent if I concluded, from 2.1.11 and the claim that I write essays, that I study philosophy.  Many

people write papers without studying philosophy.  Similarly, from 2.1.11 and the claim that I do not study

philosophy, it does not follow that I do not write papers; such an inference would be an instance of the

fallacy of denying the antecedent.

We have four rules of inference, now: MP, MT, DS, and HS.  Let’s see how to use them on the

argument 2.1.12.

2.1.12 1. (X e Y) e T

2. S w -T

3. U e -S

4. U / -(X e Y) 

We could show that the argument is valid using truth tables, including the indirect method.  But,

we can also show that it is valid by deriving the conclusion from the premises using our rules of

inference.  2.1.13 is an example of the natural deductions we will use throughout the rest of the book.

2.1.13 1. (X e Y) e T

2. S w -T

3. U e -S

4. U / -(X e Y) 

5. -S 3, 4, MP (taking ‘U’ for á and ‘-S’ for â)

6. -T 2, 5, DS (taking ‘S’ for á and ‘-T’ for â)

7. -(X e Y) 1, 6, MT (taking ‘X e Y’ for á and ‘T’ for â)

QED

Here are some things to notice about 2.1.13.  First, we number all of the premises as well as every

wff that follows.  While a derivation is really just the sequence of wffs, we will write our deductions in

the metalanguage, including line numbers and justifications.  The line numbers allow us to keep track of

our justifications.  All steps except the premises require justification.  The justification of any step

includes the line numbers and rule of inference used to generate the new wff.  For example, ‘3, 4, MP’ on

line 5 indicates that ‘-S’ is derived directly from the wffs at lines 3 and 4 by a use of the rule of Modus

Ponens.  The explanations such as “taking ‘U’ for á and ‘-S’ for â are not required elements of the

derivation, but they can be useful, especially when you are first learning to use natural deductions.

The conclusion of the argument is initially written after a single slash following the last premise. 

That conclusion, like the justifications of every following step, is not technically part of the deduction. 

Importantly, you may not use it as part of your proof.  It merely indicates what the last numbered line of



Marcus, What Follows, page 65

your derivation should be.

Lastly, ‘QED’ at the end of the derivation stands for ‘Quod erat demonstratum’, which is Latin

for ‘thus it has been shown’.  ‘QED’ is a logician’s punctuation mark: “I’m done!”  It is not required, but

looks neat and signals your intention to end the derivation.  2.1.14 is an example of a longer derivation

using our first four rules of inference.

2.1.14 1. -A e [A w (B e C)]

2. (B w D) e -A

3. B w D

4. C e A / D

5. -A 2, 3, MP

6. A w (B e C) 1, 5, MP

7. B e C 6, 5, DS

8. B e A 7, 4, HS

9. -B 8, 5, MT

10. D 3, 9, DS

QED

Constructing derivations can be intimidating at first.  If you can, start with simple sentences, or

negations of simple negations.  Plan ahead.  Feel free to work backwards from the conclusion to the

premises on the side.  For example, in 2.1.14, we could start the derivation by observing that we could get

the conclusion, ‘D’, by DS from line 3 if we had ‘-B’.  Then, both ‘-B’ and ‘D’ are goals as we work

forward through the proof.

Don’t worry about introducing extraneous lines into your proof as long as they are the results of

valid inferences.  Especially as we introduce further rules, we are going to be able to infer statements

which are not needed for the most concise derivation.  But, as long as every step is valid, the entire

inference will be valid.  It is not the case that every wff must be used after it is introduced into the

deduction.

Lastly, notice that some wffs may be used more than once in a derivation.  In 2.1.14, the ‘-A’ at

line 5 was used first with premise 1 in a MP to yield the wff at line 6.  Then, it is used immediately a

second time, with the wff at line 6, to yield ‘B e C’ on line 7.

Some students will have encountered proofs like these, perhaps in slightly less-rigorous form, in a

geometry class, or in other mathematics courses.  For other students, natural deductions of this sort are

new.  Be patient, and practice.

Exercises 2.1a.  Derive the conclusions of each of the following arguments using natural deduction.

1. 1. V e (W e X)

2. V

3. -X / -W

2. 1. X e Y

2. -Y

3. X w Z / Z

3. 1. E e F

2. -F

3. -E e (G C H) / G C H

4. 1. I e J

2. J e K

3. -K / -I

5. 1. T e S

2. S e R

3. T / R

6. 1. (I C L) e (K w J)

2. I C L

3. -K / J
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7. 1. G e E

2. F e -E

3. H w F

4. - H / -G

8. 1. -Q e (N C O)

2. (N C O) e (P e Q)

3. M w -Q

4. -M / -P

9. 1. A e D

2. D e (B e C)

3. B

4. A / C

10. 1. L w N

2. -L

3. N e (M w O)

4. (M w O) e (P / Q) / P / Q

11. 1. U e V

2. -V

3. U w W

4. W e X / X

12. 1. X e Z

2. Z e Y

3. -Y

4. -X e A / A

13. 1. C e B

2. B e D

3. (C e D) e E / E

14. 1. E e H

2. G w -F

3. -G

4. H e F / -E

15. 1. J e L

2. L e (I C M)

3. (I C M) e K

4. -K / -J

16. 1. N w (Q / R)

2. N e P

3. P e M

4. -M / Q / R

17. 1. N w (P C -R)

2. (P C-R) e Q

3. N e O

4. -O / Q

18. 1. R e S

2. S e (T w U)

3. R

4. -T / U

19. 1. Q e (-R e S)

2. T w Q

3. -T

4. R e T / S

20. 1. C e (D / -E)

2. (D / -E) e (B w A)

3. C e -B

4. C / A

21. 1. -J e K

2. K e (L e M)

3. J e M

4. -M / -L

22. 1. V e (W w U)

2. X w V

3. X e Y

4. -Y

5. -Y e -W / U

23. 1. X e (Y e Z)

2. W w X

3. W e Y

4. -Y

5. -W e Y / Z

24. 1. (H C -G) e F

2. F e (G w J)

3. I w (H C -G)

4. I e G

5. -G / J

25. 1. A e B

2. B e (C e D)

3. E w C

4. E e B

5. -B

6. C e A / D
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Exercises 2.1b.  Translate each of the following paragraphs into arguments written in PL.  Then, derive

the conclusions of the arguments using the first four rules of our system of natural deduction.

1. If Allison doesn’t go grocery shopping, Billy will go. Allison goes grocery shopping only if Carla gets

home from school early. Carla doesn’t get home early. Therefore, Billy goes grocery shopping.

2. Don Juan plays golf only if Edie makes a reservation. If Edie makes a reservation, then Frederique

writes it on the calendar. Don Juan played golf. So Frederique wrote it down on the calendar.

3. If Gertrude mops the kitchen, then Hillary washes the dishes. Either Inez or Gertrude mops the kitchen.

Inez doesn’t mop the kitchen. So Hillary washes the dishes.

4. Katerina driving to practice is a necessary condition for Jelissa’s playing soccer.  Katerina drives only

if Liza puts gas in her car. Liza doesn’t put gas in the car. So, Jelissa doesn’t play soccer.

5. Quinn or Raina will be valedictorian.  Quinn’s being valedictorian entails that she receives an A+ in

Spanish. She doesn’t receive an A+ in Spanish. So, Raina is valedictorian.

6. Nico skateboards if Mandy gives him lessons. If Nico skateboards, then either Olivia or Patricia will

watch. Mandy gives skateboarding lessons. Olivia doesn’t watch. So, Patricia watches.

7. Jose will play either trombone or ukulele. If he plays trombone, then he’ll also play violin. If he plays

ukulele, then he’ll also play a woodwind instrument. He doesn’t play violin. So, he plays a woodwind

instrument.

8. Francine pays the bills only if Gerald balances the checkbook. Gerald balances the checkbook only if

Esmeralda collects receipts. Either Hank spends money or Esmeralda doesn’t collect receipts. Hank

doesn’t spend money, so Francine doesn’t pay the bills.

9. If the corn doesn’t grow, dandelions will grow. If dandelions grow, then the apple tree will bloom. If

the corn grows, then the badgers will eat the crops. The badgers don’t eat the crops. So, the apple tree

blooms.

10. If the zoo has hippos, then it has yaks. If the zoo has yaks, then it has zebras. The zoo has either water

buffalo or hippos. The zoo has water buffalo only if they have yaks. The zoo doesn’t have yaks. So, the

zoo has zebras. 
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§2.2: Rules of Inference 2

Here are four more valid forms which you can check using the indirect truth table method.

2.2.1 á

â / á C  â Conjunction (Conj)

2.2.2 á / á w â Addition (Add)

2.2.3 á C â / á Simplification (Simp)

2.2.4 (á e â) C (ã e ä)

á w ã / â w ä Constructive Dilemma (CD)

Make sure to understand the difference between conjunction and addition.  Conjunction allows us

to put two prior premises together on one line.  Addition allows us to add, using disjunction, any wff to

one we have already established; if you have already established á, you have clearly established that

either á or anything else holds.  Be especially careful to avoid these two related but invalid inferences!

2.2.5 á / á C â

2.2.6 á w â / á 

Simplification only allows you to infer the first conjunct of a conjunction.  A later rule of

equivalence will allow us to infer the second conjunct.  For now, our list of rules is incomplete.  We must

leave the second conjunct alone.

Lastly, note the similarity between Constructive Dilemma and Modus Ponens.  Constructive

Dilemma is a complex form of modus ponens: from the conjunction of two conditionals, and the

disjunction of their antecedents, one can infer the disjunction of their consequents.

2.2.7 is a sample derivation using Conjunction and Simplification.  2.2.8 uses Addition.

2.2.7 1. A e B

2. F e D

3. A C E

4. -D / B C -F

5. A 3, Simp

6. B 1, 5, MP

7. -F 2, 4, MT

8. B C -F 6, 7, Conj

QED

2.2.8 1. -M w N

2. --M / N w O

3. N 1, 2, DS

4. N w O 3, Add

QED
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2.2.9 is a simple derivation using CD.  Note that one of the disjuncts used in the inference, at line

3, is itself a conjunction; the antecedent of the wff at line 2 is the same conjunction.

2.2.9 1. N e (O C P) 

2. (Q C R) e O

3. N w (Q C R) / (O C P) w O

4. [N e (O C P)] C [(Q C R) e O] 1, 2, Conj

5. (O C P) w O 4, 3, CD

QED

Lastly, 2.2.10 is just a slightly-longer derivation.

2.2.10 1. (-A w B) e (G e D)

2. (G w E) e (-A e F)

3. A w G

4. -A / F C D

5. G 3, 4, DS

6. G w E 5, Add

7. -A e F 2, 6, MP

8. F 7, 4, MP

9. -A w B 4, Add

10. G e D 1, 9, MP

11. D 10, 5, MP

12. F C D 8, 11, Conj

QED

Exercises 2.2a.  For each of the following arguments, determine which, if any, of the eight rules of

inference is being followed.  If the inference is not in the form of one of the eight rules, it is invalid.

1. A e (B A C)

-(B A C) / -A

2. [(D w E) e F] A [F e (G/ H)]

(D w E) w F / F w (G / H)

3. I e -J

K e I / K e-J

4. L

-M A N / -(M A N) A L

5. O / O A -O

6. P / P w [Q / (R A -P)]

7. S w -T

--T / -S

8. -U / V

(-U / V) e W / W

9. X e -Y

-Y e Z / (X e -Y) A (-Y e Z)

10. (A w -B) w --C / A w -B

11.    -[D e (E w F)]

         [D e (E w F)] w [G e (E A -F)]         

/ [G e (E A -F)]

12. [(G w H) A I] A (-I / K)

/ (G w H) A I
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Exercises 2.2b.  Derive the conclusions of each of the following arguments using the eight rules of

inference

1. 1. A e (C C D)

2. A C B / C

2. 1. (M e N) C (O e P)

2. M C Q / N w P

3. 1. I w J

2. -I C K / J w L

4. 1. (F w G) e H

2. F C E / H

    

5. 1. F e E

2. -E C G

3. H / -F C H

6. 1. (-A e B) C (C e D)

2. A e D

3. -D / B w D

7. 1. W e X

2. -X C Y / (-W w Z) C -X

8. 1. T w S

2. -T

3. U / U C S

9. 1. (V C W) e X

2. V C Y

3. W C Z / X

10. 1. (E w I) e H

2. H e (F C G)

3. E / (F C G) C E

11. 1. (J e L) C (K e M)

2. J C M

3. -L / M

12. 1. N w --P

2. -N C Q

3. -P w Q / --P C Q

13. 1. M e N

2. N e O

3. M C P / O w P

14. 1. W e Z

2. Z e (X w Y)

3. W C Y

4. (X e U) C (Y e V) / U w V

15. 1. B e A

2. -A C D

3. -B e C / C w A

16. 1. D w E

2. D e F

3. -F C G / (E w H) C -F

17. 1. R e S

2. S e (T e U)

3. R

4. U e R / T e R

18. 1. (C e D) C (B e D)

2. A C C

3. A e C / D w D

19. 1. M e J

2. (-M C -J) e K

3. -J / K w N

20. 1. O e Q

2. Q e P

3. P e (R C S)

4. O / R C S

21. 1. (R w T) e S

2. S e U

3. R / U w T

22. 1. I e J

2. -J C K

3. -J e L

4. --I / K C L
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23. 1. Q e R

2. R e (S w T)

3. Q

4. -S C U / (T C Q) w R

24. 1. (-V e W) C (X e Y)

2. V e Z

3. -W C X

4. -Z C Y / Y C -V

25. 1. A e B

2. B e (C e D)

3. A C D

4. -D

5. D C E / E

Exercises 2.2c.  Translate each of the following paragraphs into arguments written in PL.  Then, derive

the conclusions of the arguments using the eight rules of inference.

1. If Alessandro sings in the musical, then Beatriz will buy a ticket.  Beatriz doesn’t buy a ticket and

Carlo goes to watch the musical.  So, Alessandro doesn’t sing in the musical and Beatriz doesn’t buy a

ticket.

2. If Don is an EMT then everyone is saved.  All girls are saved provided that Frank is an EMT.  Helga’s

being a doctor implies that Don is an EMT.  Helga is a doctor; moreover all girls are saved.  So, either

everyone is saved or all girls are saved.

3. If Michelle eats ice cream, then she’ll eat jelly beans.  If she eats jelly beans, then she’ll eat kettle corn.

She eats ice cream; however she also eats lunch.  So she’ll eat either kettle corn or jelly beans.

4. If a classroom is quiet, then it is not rowdy.  If a classroom isn’t rowdy, then it’s silent.  The classroom

is quiet and not rowdy.  So, the classroom is quiet and silent.

5. Having a thunderstorm is a sufficient condition for needing an umbrella.  Either it is very cloudy or you

don’t need an umbrella.  It’s not very cloudy.  So, either there aren’t thunderstorms or it’s windy.

6. Either elephants or flamingos eat nuts.  If elephants eat nuts, then gorillas eat fruit.  Gorillas don’t eat

fruit but hippos eat berries.  So, either flamingos eat nuts or hippos eat berries.

7. Mica goes swimming only if Nicole lifeguards.  Pedro is free on the condition that Ona goes to the

beach.  Mica goes swimming unless Ona goes to the beach.  Nicole doesn’t lifeguard.  So, either Pedro is

free or Mica goes swimming.

8. Elia playing basketball is a necessary condition of her taking art.  She’ll walk the dog on the condition

that she takes ceramics.  She doesn’t play basketball.  She takes ceramics.  So she doesn’t take art but she

does walk the dog.

9. Jaime either flies a kite or lies in the sun and listens to music. He doesn’t fly a kite, but he juggles. If he

lies in the sun, then he juggles. So, he either juggles or listens to music.

10. If Xavier takes Spanish, then Yolanda tutors him.  Zeke pays Yolanda if she tutors Xavier.  Either

Waldo or Xavier take Spanish.  Waldo doesn’t take Spanish; also Yolanda doesn’t tutor Xavier.  So, Zeke

pays Yolanda but Waldo doesn’t take Spanish.
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§2.3: Rules of Equivalence 1

Rules of Inference allow you to derive new conclusions based on previously accepted premises or

derivations.  They are justified by appeal to the truth-table definitions of validity.  So, they must be used

on whole lines only, and they go only one way: from premises to conclusion.

Rules of Equivalence, in contrast, allow you to substitute one proposition or part of a proposition

with a logically equivalent expression.  They are based on truth-table equivalences, and so may be used

for any expressions, anywhere in a proof.  They may be used on parts of lines, or on whole lines.  They

may be used in either direction.  To check the legitimacy of the substitutions, we can use truth tables to

show that the expressions are in fact logically equivalent.  The appendix to this chapter provides complete

truth tables proving most of the rules of equivalence.

De Morgan’s Laws (DM)

-(á C â)  W  -á w -â

-(á w â)  W  -á C -â

Note the use of ‘W’ to mean ‘is logically equivalent to’.  It is a symbol of the metalanguage, like

the Greek letters, and not a symbol of the language of propositional logic.  Also note that there are two

versions of De Morgan’s Law: one for the negation of a conjunction, and the other for the negation of a

disjunction.

For all Rules of Equivalence, you can substitute any formula of the form of either side for a

formula of the other; you can go forward (left-to-right) or backward (right-to-left).  A forward DM

distributes the tilde to the components of the conjunction or disjunction, changing the connective inside

the parentheses.  A backward DM factors out the tilde.  Both the forward and the backward uses require

the same justification.  2.3.1 contains a forward use of DM, while 2.3.2 contains a backward use.

2.3.1 1.  (A w B) e E

2. -E

3. A w D / D

4. -(A w B) 1, 2, MT

5. -A C -B 4, DM

6. -A 5, Simp

7. D 3, 6, DS

QED

2.3.2 1. G e (H C F)

2. -H w -F / -G

3. -(H C F) 2, DM

4. -G 1, 3, MT

QED
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Association (Assoc)

á w (â w ã) W  (á w â) w ã

á C (â C ã)  W  (á C â) C ã

As with DM, Assoc has a version for conjunction and a version for disjunction.  Unlike DM,

Assoc requires no switching of connectives.  It merely allows you to re-group the component propositions

and the two connectives must be the same.  Remember, like all rules of equivalence, it can be used in

either direction.  Assoc is often used with DS, as in 2.3.3.

2.3.3 1. (L w M) w N

2. -L

3. (M w N) e O / O

4. L w (M w N) 1, Assoc

5. M w N 4, 2, DS

6. O 3, 5, MP

QED

Distribution (Dist)

á C (â w ã)  W  (á C â) w (á C ã)

á w (â C ã)  W  (á w â) C (á w ã)

The rule of distribution allows you to distribute a conjunction over a disjunction or to distribute a

disjunction over a conjunction.  The main operator is always switched (between conjunction and

disjunction) after a use of Dist.  So, using Dist on a sentence whose main operator is a disjunction yields a

conjunction from which you can simplify!

Notice that while the grouping of terms changes, the order of the first two connectives remains

after using a dist, with an extra connective of the first type added at the end (going left to right) or taken

away (going right to left).  So Cw becomes CwC and wC becomes wCw (or vice versa). 

Be careful to distinguish Dist from Assoc.  Assoc is used when you have two of the same

connectives.  Dist is used when you have a combination of conjunction and disjunction.  2.3.4 contains a

forward use of Dist, while 2.3.5 contains a backward use.

2.3.4 1. H C (I w J)

2. -(H C I) / H C J

3. (H C I) w (H C J) 1, Dist

4. H C J 3, 2, DS

QED

2.3.5 1. (P w Q) C (P w R)

2. -P / Q C R

3. P w (Q C R) 1, Dist

4. Q C R 3, 2, DS

QED
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Commutativity (Com)

á w â  W  â w á

á C â  W  â C á

Commutativity finally allows us to make some inferences that it is easy to see are valid.  In effect,

it doubles the rules DS, Simp, and Add.  From a disjunction, we can now infer the first disjunct from the

negation of the second.  From a conjunction, we can now infer the second conjunct using Simp.  And, we

can add a proposition in front of a given wff.  2.3.6, 2.3.7, and 2.3.8 provide brief examples of each kind

of inference.

2.3.6 1. P w Q

2. -Q

3. Q w P 1, Com

4. P 3, 4, DS

2.3.7 1. P C Q

2. Q C P 1, Com

3. Q 2, Simp

2.3.8 1. P

2. P w Q 1, Add

3. Q w P 2, Com

Each of the three derivations 2.3.6 - 2.3.8 can be inserted into any derivation.  2.3.9 demonstrates

the use of commutativity with simplification and disjunctive syllogism.

2.3.9 1. A C B

2. B e (D w E)

3. -E / D

4. B C A 1, Com

5. B 4, Simp

6. D w E 2, 5, MP

7. E w D 6, Com

8. D 7, 3, DS

QED

Double Negation (DN)

á  W  --á

Double negation illustrates the difference between the negation of a statement and a statement

with the opposite truth value of a given statement.  The negation of a statement is precisely that statement

with one additional tilde.  ‘-P’ is the negation of ‘P’.  But, ‘P’ is not the negation of ‘-P’, even though it

has the opposite truth value.  The negation of ‘-P’ is ‘--P’.  Later, when we get to indirect proof, the

difference between negations and statements with opposite truth values will be important.

Double negation is often used right-to-left as a way of clearing extraneous tildes.  But be careful

not to add or subtract single tildes.  They must be added or removed in consecutive pairs.
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There are three ways to use DN to add two tildes to a statement with a binary connective.  2.3.10

can be transformed, in a single use of DN, into 2.3.11, 2.3.12, or 2.3.13.

2.3.10 P w Q 

2.3.11 --P w Q by double-negating the ‘P’

2.3.12 P w --Q by double-negating the ‘Q’

2.3.13 --(P w Q) by double-negating the whole disjunction

DN, like Com, allows us to expand our uses of other rules, as we can see in 2.3.14.

2.3.14 1. -F e -G

2. G

3. F e H / H

4. --G 2, DN

5. --F 1, 4, MT

6. F 5, DN

5. H 3, 6, MP

QED

Be careful to distinguish the rules of equivalence, which we saw in this section, from the rules of

inference, which we saw in the previous two sections.  One difference is that each rule of equivalence can

be used in two different directions.  Another difference is that the rules of equivalence are justified by

showing that expressions of each form are logically equivalent, as I do for most of the rules of

equivalence in the appendix to this chapter.  A third difference is that rules of equivalence apply to any

part of a proof, not just to whole lines.  Rules of inference must be used on whole lines.  Thus, 2.3.15 is

an unacceptable use of MP, though we will be able to infer the desired wff in several steps, later.

2.3.15 P e (Q e R)

Q

P e R

In contrast, we can use any rule of equivalence on only a part of a line, as with DM in 2.3.16 and

DN and DM in 2.3.17.

2.3.16 P e -(Q w P) 

P e (-Q C -P) DM

2.3.17 S e (-P C Q)

S e (-P C --Q) DN

S e -(P w -Q) DM
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Exercises 2.3a. Derive the conclusions of each of the following arguments using the rules of inference

and the first five rules of equivalence.

1. 1. A e B

2. C C A / B

2. 1. (A C B) w (A C C)

2. D e -A / -D

3. 1. E e F

2. --E C G / F

4. 1. H w J

2. I C -H / J

5. 1. X e Y

2. Z C Y / -X

6. 1. F e (C w D)

2. -[C w (D w E)] / -F

7. 1. X e Y

2. (-Y C Z) C T

3. X w W / W

8. 1. -A w B

2. -[(-A w C) w D] / B

9. 1. R C (S w T)

2. -R w -S / T

10. 1. I C {-[J C (K w L)] C M}

2. (-J w -L) e N / N

11. 1. J e K

2. K e [L w (M C N)]

3. -N C J / L

12. 1. -[(G C H) C I]

2. G C I / -H

13. 1. Q e R

2. -(S w T)

3. T w Q / R

14. 1. A w (B C C)

2. (C w A) e --B / B

15. 1. (K C L) C M

2. K e N

3. N e -(O w P) / -P

16. 1. [O w (P C Q)] e R

2. R e -S

3. P C S / -Q

17. 1. E e F

2. F e -(G w H)

3. I C E / -H

18. 1. T w (U C V)

2. T e (W C X)

3. -W / V

19. 1. A e B

2. -[(C C D) w (C C B)]

3. C C E / -A

20. 1. [T C (U w V)] e W

2. W e -X

3. Y C X / -(T C U) C -(T C V)

21. 1. F e G

2. H e I

3. (J w F) w H

4. -J C -G / I

22. 1. O e P

2. (O C -Q) C -R

3. P e [Q w (R w S] / S

23. 1. U e V

2. V e -(W C X)

3. U C (W C Y) / -X C Y

24. 1. K e -L

2. K w (M C N)

3. M e -N / -(L C N)

25. 1. (O C P) e (Q C R)

2. (P e -Q) C (O e -R)

3. P / -P w - O
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Exercises 2.3b.  Translate each of the following paragraphs into arguments written in PL.  Then, derive

the conclusions of the arguments using the eight rules of inference and the first five rules of equivalence.

1. If Albert asks Bernice on a date, then she’ll say yes.  Bernice doesn’t say yes to a date and her cat died,

but her dog is still alive.  So, Albert didn’t ask Bernice on a date.

2. Callie majors in English only if she reads Charles Dickens.  Either Callie and Elisa major in English or

Callie and Franz major in English.  So, Callie reads Charles Dickens.

3. If there is a mouse in the house, then nuts were left out.  The lights were turned off unless no nuts were

left out.  Neither the lights were turned off nor were the doors left open.  So, there was no mouse in the

house. 

4. It is not the case that either there was a paper or both a quiz and recitation in French class.  If there is

no quiz, then the students are happy, and if there is no recitation, the teacher is happy.  So, either the

students or the teacher is happy.

5. Roland will either go on the upside-down roller coaster, or the speedy vehicle or the water slide.  He

doesn’t go on the upside-down roller coaster and he doesn’t go on the speedy vehicle.  If he goes on the

tilt-a-whirl, then he won’t go on the water slide.  So, he doesn’t go on the tilt-a-whirl.

6. Mario either gets an x-ray, or Yasmin and Zoe take care of him.  If Mario gets an x-ray, then Zoe will

take care of him.  It is not the case that Winnie or Zoe take care of Mario.  So Yasmin and Zoe take care

of Mario.

7. After-school activities running late entails that the buses will run late.  The buses running late is a

sufficient condition for either Carlos and Deandra getting home late or Edna missing dinner.  Either after-

school activities run late but Carlos doesn’t get home late, or after-school activities run late but Deandra

doesn’t get home late.  So, Edna misses dinner.

8. If Luz doesn’t travel to Greece, the she’ll go to Haiti.  She’ll go to Israel given that she travels to Haiti.

She doesn’t go to either Greece or Jordan.  So she goes to Israel and not Jordan. 

9. It is not the case that either Ernesto and Francisco go to swim practice or Gillian or Hayden go to swim

practice.  Either Isaac or Joan goes to swim practice.  If Isaac goes to swim practice, then Hayden will go

to swim practice.  So, Joan goes to swim practice.

10. If it’s not the case that both Katrina and Laetitia go to math class, then Ms. Macdonald will be angry. 

Ms. Macdonald is angry only when Nigel skips math class.  It is not the case that either Olivia and Polly

both skip math class, or Nigel does.  Therefore, Laetitia goes to math class. 
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§2.4: Rules of Equivalence 2

This section introduces the final five of our eighteen rules of equivalence.

Contraposition (Cont)

á e â  W  -â e -á

Cont allows you to switch a conditional for its contrapositive.  In other words, the antecedent and

consequent of a conditional statement may be exchanged if they are both negated (or, right-to-left, un-

negated).  Cont is often used with HS, as in 2.4.1.

2.4.1 1. A e B

2. D e -B / A e -D

3. --B e -D 2, Cont

4. B e -D 3, DN

5. A e -D 1, 4, HS

QED

Cont can be tricky when only one formula is negated, as we can see in 2.4.2 and 2.4.3, which

perform the same transformation in different orders.  You can either add a negation to both the antecedent

and consequent when you use Cont, or you can take a tilde off of each of them.  But, you can not mix-

and-match.  Thus, you often need to invoke DN together with Cont.

2.4.2 A e -B

--B e -A by Cont (left-to-right)

B e -A by DN

2.4.3 A e -B

--A e -B by DN

B e -A by Cont (right-to-left)

Material Implication (Impl)

á e â  W  -á w â

The rule of material implication allows you to change a disjunction to a conditional or vice versa. 

It is often easier to work with disjunctions.  From a disjunction, you may be able to use De Morgan’s laws

to get a conjunction.  You may be able to use distribution, which does not apply to conditionals.  In

contrast, sometimes you just want to work with conditionals, using hypothetical syllogism, modus

ponens, or modus tollens.  Proofs are over-determined by our system: there are multiple ways to do them

once we have all the rules.  The rule of material implication gives us a lot of options.

The rule of material implication also illustrates the underlying logic of the material conditional. 

It is just a way of saying that either the antecedent is false or the negation is true.  Unlike many natural-

language conditionals, it says nothing about the connections between the antecedent and the consequent.

The derivation 2.4.4 illustrates the use of Impl with HS.
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2.4.4 1. G e -E

2. E w F / G e F

3. --E w F 2, DN

4. -E e F 3, Impl

5. G e F 1, 4, HS

QED

Material Equivalence (Equiv)

á / â  W  (á e â) C (â e á)

á / â  W  (á C â) w (-á C -â)

Equiv is almost the only thing you can do with a biconditional.  There are two distinct versions. 

If you have a biconditional in your premises, you can unpack it in either way.  The first version tends to

be more useful since it yields a conjunction both sides of which you can simplify, as in 2.4.5

2.4.5 1. A / B

2. -A 

3. B e C / -B C (A e C)

4. (A e B) C (B e A) 1, Equiv

5. (B e A) C (A e B) 4, Com

6. B e A 5, Simp

7. -B 6, 2, MT

8. A e B 4, Simp

9. A e C 8, 3, HS

10. -B C (A e C) 7, 9, Conj

The second version of material equivalence reflects the truth-table definition of the connective. 

Remember, a biconditional is true if either both components are true (first disjunct) or both disjuncts are

false (second disjunct).  2.4.6 demonstrates an instance of the second use of the rule.

2.4.6 1. D / E

2. -D / -D C -E

3. (D C E) w (-D C -E) 1, Equiv

4. -D w -E 2, Add

5. -(D C E) 4, DM

6. -D C -E 3, 5, DS

If you need to derive a biconditional, again the first version of the rule is often more useful.  First,

derive the two component conditionals.  Then conjoin them and use the rule.  Take a moment to make

sure you see how the rule is used at 2.4.7.

2.4.7 1. -[(K e -H) C (-H e K)]

2. (I C J) e (K / -H) / -(I C J)

3. -(K / -H) 1, Equiv

4. -(I C J) 2, 3, MT

QED
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Exportation (Exp)

á e (â e ã)  W  (á C â) e ã

Exportation allows you to group antecedents of nested conditionals either together as a

conjunction (on the right) or separately (on the left).  According to exportation, a typical nested

conditional like 2.4.8 can be translated as either 2.4.9 or 2.4.10.

2.4.8 If I get my paycheck today, then if you come with me, we can go to dinner.

2.4.9 P e (C e D)

2.4.10 (P C C) e D

While 2.4.9 is the more natural reading of 2.4.8, the alternative 2.4.10 is also satisfying.  A close

English translation of 2.4.10, at 2.4.11, is intuitively equivalent to the original.

2.4.11 If I get my paycheck today and you come with me, then we can go to dinner.

Further, exportation, when combined with commutativity, allows us to switch antecedents.  So

2.4.9 is also equivalent to 2.4.12.  A natural translation of that proposition into English is at 2.4.13.

2.4.12 C e (P e D)

2.4.13 If you come with me, then if I get my paycheck, we can go to dinner.

While 2.4.13 is not as intuitively satisfying as 2.4.11 as an equivalent of 2.4.8, they are all

logically equivalent.  The difference in tone or presupposition arises from the awkwardness of

representing natural-language conditionals, and their causal properties, with the material conditional.

The rule of exportation sometimes allows you get to MP or MT, as in 2.4.14.

2.4.14 1. L e (M e N)

2. -N / -L w -M

3. (L C M) e N 1, Exp

4. -(L C M) 3, 2, MT

5. -L w -M 4, DM

QED

Tautology (Taut)

á  W  á C á

á  W  á w á

Tautology eliminates redundancy.  The conjunction version is redundant right-to-left, since we

can use Simp instead.  The disjunction version is redundant left-to-right, since we can use Add instead. 

But, the other directions can be useful, especially for disjunction, as in 2.4.15.

2.4.15 1. O e -O / -O

2. -O w -O 1, Impl

3. -O 2, Taut

QED
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Some more potentially helpful examples

We have now seen all eighteen of our rules.  Some of the proofs you will be asked to derive now

are long.  Some are quite difficult.  In the next few sections, I will introduce two additional proof

techniques which will make derivations easier.

For now, you can make many derivations simpler by learning some simple techniques which can

be applied in various different proofs.  2.4.16 - 2.4.22 contain some derivations and useful tricks that may

be adapted to other, longer proofs.

2.4.16 1. -A / A e B

2. -A w B 1, Add

3. A e B 2, Impl

QED

2.4.17 1. E / F e E

2. E w -F 1, Add

3. -F w E 2, Com

3. F e E 3, Impl

QED

2.4.18 1. G e (H e I) / H e (G e I)

2. (G C H) e I 1, Exp

3. (H C G) e I 2, Com

4. H e (G e I) 3, Exp

QED

2.4.19 1. O e (P C Q) / O e P

2. -O w (P C Q) 1, Impl

3. (-O w P) C (-O w Q) 2, Dist

4. -O w P 3, Simp

5. O e P 4, Impl

QED

2.4.20 1. (R w S) e T / R e T

2. -(R w S) w T 1, Impl

3. (-R C -S) w T 2, DM

4. T w (-R C -S) 3, Com

5. (T w -R) C (T w -S) 4, Dist

6. T w -R 5, Simp

7. -R w T 6, Com

8. R e T 7, Impl

QED
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2.4.21 1. W e X

2. Y e X / (W w Y) e X

3. (W e X) C (Y e X) 1, 2, Conj

4. (-W w X) C (Y e X) 3, Impl

5. (-W w X) C (-Y w X) 4, Impl

6. (X w -W) C (-Y w X) 5, Com

7. (X w -W) C (X w -Y) 6, Com

8. X w (-W C -Y) 7, Dist

9. (-W C -Y) w X 8, Com

10. -(W w Y) w X 9, DM

11. (W w Y) e X 10, Impl

QED

2.4.22 1. (J w K) e (L C M)

2. -J e (N e -N)

3. -L / -N

4. -L w -M 3, Add

5. -(L C M) 4, DM

6. -(J w K) 1, 5, MT

7. -J C-K 6, DM

8. -J 7, Simp

9. N e -N 2, 8, MP

10. -N w -N 9, Impl

11. -N 10, Taut

QED

Exercises 2.4a.  Derive the conclusions of each of the following arguments using the rules of inference

and equivalence.

1. 1. A e B

2. B e -B / -A

2. 1. -K w L

2. L e -K /-K

3. 1. (A e B) e C

2. -A w (B C D) / C

4. 1. G e H

2. -(I e H) / -G

5. 1. -I w J

2. J / K

3. (I C L) w (I C M) / K

6. 1. (T C U) e V

2. -(T e W) / U e V

7. 1. W e (X C Y)

2. (W C -X) w Z / Z

8. 1. N e (O C P)

2. -N e Q / -O e Q

9. 1. E / F

2. -(G w E) / -F

10. 1. G w H

2. -I C (J C -G) / H w -I

11. 1. A w (B w A)

2. -(B w C)

3. A e D / D

12. 1. (H C I) e J

2. H C (I w K) / -J e K
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13. 1. L e -(-M w K)

2. M e (-K e N)

3. -N / -L

14. 1. Q e R

2. R e (S e T) / -T e (S e -Q)

15. 1. D / E

2. (E w F) e G

3. -(G w H) / -D

16. 1. D w (E w F)

2. F e (G C H)

3. -G / D w E

17. 1. (X e Y) e Z

2. W e -Z / -(W C Y)

18. 1. R e T

2. T e S

3. (U C S) e R

4. -(-U w T) / R / S

19. 1. (S / T) C -U

2. -S w (-T w U) / -S

20. 1. [V w (W w X)] e Y

2. Y e Z / Z w -V

21. 1. A e (B e C)

2. -C w (D C E)

3. -(D w F) / -A w -B

22. 1. F e (G e H)

2. G C -H

3. J e F / -J

23. 1. N e O

2. P e Q

3. -(Q w O) / P / N

24. 1. O / P

2. P / Q / O / Q

25. 1. T e (U e V)

2. Q e (R e V)

3. (T C U) w (Q C R) / V

26. 1. -(X e Y)

2. Y w (Z C A) / Z / A

Exercises 2.4b.  Translate each of the following paragraphs into arguments written in PL.  Then, derive

the conclusions of the arguments using the rules of inference and equivalence.

1. There is a rainbow if, and only if, the sun is out.  The sun is not out.  So, there is no rainbow.

2. If there are alpacas on the farm, then there are beagles.  If there are beagles, then there are cows.  So,

either there are cows or there are no alpacas.

3. If David quits the team, then Sandra watches the games provided that Ross joins the team.  So, it is not

the case that David quits the team, and Ross joins the team, and Sandra doesn’t watch the games.

4. If there is a line, Marla must wait in it.  In New England High School shows up, then there is a line if

the organist attends.  The organist attends and New England High School shows up.  Therefore, Marla

must wait in line.

5. Cecilia goes roller skating if and only if Denise comes with her.  Denise and Elise go roller skating, and

Felicia goes running.  So, Cecilia goes roller skating.

6. If you are from the planet Orc, then you have pin-sized nostrils.  But, things with pin-sized nostrils are

not from Orc.  Either you are from Orc or Quaznic, or you rode a long way on your spaceship.  So, you

are from Quaznic unless you rode a long way on your spaceship.
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7. It is not the case that violets bloom only if they are watered. Either violets are watered or they undergo

special treatment. So, they undergo special treatment. 

8. The Janitor cleans the school if and only if Kurt pays him.  So Kurt doesn’t pay him if, and only if, the

janitor doesn’t clean the school.

9. Either Ana doesn’t like lemons, or she likes mangoes.  She likes lemons and nectarines, and oranges.

She either doesn’t like mangoes, or she likes plums.  So, she likes plums.

10. If Francesca playing the xylophone entails that she yawns in class then Zara gives a presentation in

class.  If Zara gives a presentation, then the woodwind players listen.  So either the woodwind players

listen or Francesca plays xylophone.
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§2.5: Conditional Proof

There are three more sections in this chapter on natural deductions in PL.  This section introduces

a proof method, called conditional proof, which allows us to simplify many long, difficult proofs.  It will

also allow us to derive logical truths, or theorems of our system of logic, as we will see in the next

section.  In the last section of the chapter, we will examine a third method of proof, indirect proof.

When you want to derive a conditional conclusion, you can assume the antecedent of the

conditional, for the purposes of the derivation, taking care to indicate the presence of that assumption

later.  Consider the argument at 2.5.1, which has a conditional conclusion.

2.5.1 1. A w B

2. B e (E C D) / -A e D

Think about what would happen if we had the antecedent of the conditional conclusion, ‘-A’, as

another premise.  First, we would be able to infer ‘B’ by DS with line 1.  Then, since we would have ‘B’,

we could use MP to infer ‘E C D’ from line 2.  Lastly, given ‘E C D’ we could use Com and Simp and get

‘D’.  So, ‘D’ would follow from ‘-A’.  The rule of conditional proof formalizes this line of thought.

Method for Conditional Proof

1. Indent, assuming the antecedent of your desired conditional.

Write ‘ACP’, for ‘assumption for conditional proof’.

Use a vertical line to set off the assumption from the rest of your derivation.

2. Derive the consequent of desired conditional.

Continue the vertical line.

Proceed as you would normally, using any lines already established.

3. Discharge (un-indent).

Write the first line of your assumption, a e, and the last line of the indented sequence.

Justify the un-indented line with CP, and indicate the indented line numbers.

The line of thought we took discussing 2.5.1 is thus formalized by using the indented sequence

you see at 2.5.2.

2.5.2 1. A w B

2. B e (E C D) / -A e D

*3. -A ACP Suppose -A.

*4. B 1, 3, DS

*5. E C D 2, 4, MP

*6. D C E 5, Com

*7. D 6, Simp Then D would follow.

8. -A e D 3-7, CP So, if -A were true, then D would be.

QED

The purpose of indenting and using a vertical line is to mark the scope of your assumption.  Any

statements you derive within the scope of that assumption are not proven, but only derived from that

assumption.  Thus, after you discharge your assumption, you may not use statements within the scope of

that assumption later in the proof.  You could have discharged your assumption after any number of steps

in the indented sequence: ‘-A e (D C E)’; ‘-A e (E C D)’; ‘-A e B’; and even ‘-A e -A’ are all valid

inferences given the premises.  But none of the consequents of those conditional statements are validly



Marcus, What Follows, page 86

inferred from the premises.

Conditional proof makes many of the derivations we have done significantly easier.  Let’s call the

method of proof we have been using all along the direct method.  Contrast the same argument proved

directly, in 2.5.3, and conditionally, in 2.5.4.

2.5.3 1. (P e Q) C (R e S) / (P C R) e (Q C S) Direct Method

2. P e Q 1, Simp

3. -P w Q 2, Impl

4. (-P w Q) w -R 3, Add

5. -P w (Q w -R) 4, Assoc

6. (R e S) C (P e Q) 1, Com

7. (R e S) 6, Simp

8. -R w S 7, Impl

9. (-R w S) w -P 8, Add

10. -P w (-R w S) 9, Com

11. [-P w (Q w -R)] C [-P w (-R w S)] 5, 10, Conj

12. -P w [(Q w -R) C (-R w S)] 11, Dist

13. -P w [(-R w Q) C (-R w S)] 12, Com

14. -P w [-R w (Q C S)] 13, Dist

15. P e [-R w (Q C S)] 14, Impl

16. P e [R e (Q C S)] 15, Impl

17. (P C R) e (Q C S) 16, Exp

QED

2.5.4 1. (P e Q) C (R e S) / (P C R) e (Q C S) Conditional Method

*2. P C R ACP

*3. P e Q 1, Simp

*4. P 2, Simp

*5. Q 3, 4, MP

*6. (R e S) C (P e Q) 1, Com

*7. R e S 6, Simp

*8. R C P 2, Com

*9. R 8, Simp

*10. S 7,9, MP

*11. Q C S 5, 10, Conj

12. (P C R) e (Q C S) 2-11, CP

QED

Not only is the conditional method of proof ordinarily shorter, as in this case.  It is also

conceptually much less difficult.  In this case, to see that one has to add what one needs in the direct

version is not easy.  The conditional proof proceeds in obvious ways.
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You can use CP repeatedly within the same proof, whether nested or sequentially.  2.5.5

demonstrates a nested use of CP while 2.5.6 shows how we can use CP sequentially to prove

biconditionals.

2.5.5 1. P e (Q w R)

2. (S C P) e -Q / (S e P) e (S e R)

*3. S e P ACP Now we want S e R.

* *4. S ACP Now we want R.

* *5. P 3, 4, MP

* *6. Q w R 1, 5, MP

* *7. S C P 4, 5, Conj

* *8. -Q 2, 7, MP

* *9. R 6, 8, DS

*10. S e R 4-9, CP

11. (S e P) e (S e R) 3-10, CP

QED

2.5.6 1. (B w A) e D

2. A e -D

3. -A e B / B / D

*4. B ACP

*5. B w A 4, Add

*6. D 1, 5, MP

7. B e D 4-6 CP

*8. D ACP

*9. --D 8, DN

*10. -A 2, 9, MT

*11. B 3, 10, MP

12. D e B 8-11 CP

13. (B e D) C (D e B) 7, 12, Conj

14. B / D 13, Equiv

QED

Notice that we start the second sequence at 2.5.6 intending to derive ‘B’.  We already have a ‘B’

in the proof, though, at line 4.  But that ‘B’ was a discharged assumption, and is off-limits after line 6. 

2.5.7 demonstrates a standard method for proving biconditionals.  In such cases, you want ‘P /

Q’ which is logically equivalent to ‘(P e Q) C (Q e P)’.  This method is not always the best one, but it is

usually a good first thought.

Method for Proving A Biconditional Conclusion

Assume P, Derive Q, Discharge.

Assume Q, Derive P, Discharge.

Conjoin the two conditionals.

Use Material Equivalence to yield the biconditional.
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You may also use CP in the middle of a proof to derive statements which are not your main

conclusion, as in 2.5.7.

2.5.7 1. P e (Q C R)

2. (P e R) e (S C T) / T

*3. P ACP

*4. Q C R 1, 3, MP

*5. R C Q 4, Com

*6. R 5, Simp

7. P e R 3-6, CP

8. S C T 2, 7, MP

9. T C S 8, Com

10. T 9, Simp

QED

Exercises 2.5a.  Derive the conclusions of each of the following arguments using the 18 rules and the

method of conditional proof.

1. 1. (A w C) e D

2. D e B / A e B

2. 1. X e Y

2. Y e Z / X e (Y C Z)

3. 1. Q e (-R C S) / R e -Q

4. 1. -(P C Q) e [(-P C -Q) C (-R C -S)]

/ P / Q

5. 1. A e [(D w B) e C] / A e (D e C)

6. 1. Z e -Y / (X C Y) e (Z e W)

7. 1. -M e N

2. L e -N / -L w M

8. 1. R e -O

2. -R e [S C (P w Q)] / O e (P w Q)

9. 1. -G w (E C -F) / (E e F) e -G

10. 1. I e H

2. -I e J

3. J e -H / J / -H

11. 1. -(U w V)

2. W e X / (U w W) e (V e X)
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12. 1. -M w N

2. P / (M w -P) e (O w N)

13. 1. -(I w -K)

2. L e J / (I w L) e (K C J)

14. 1. X e [(T w W) e S]

2. (W e S) e (Y e R)

3. -Z e -R / X e (Y e Z)

15. 1. E e (F e G)

2. -(H w -E)

3. G e H / F e H

16. 1. -M e -(-P w Q)

2. -(O w N) / (M e O) e (P C -N)

17. 1. (T e -Q) C -W

2. -Q e [(W w S) C (W w T)]

3. -T w (S e X) / T e X

18. 1. [(P e (Q e P)] e S

2. [(P e Q) e (-Q e -P)] e (S e T) / T

19. 1. E e -(F e G)

2. F e (E C H) / E / F

20. 1. M e (-K w N)

2. N e L

3. M w (K C -L) / M / (K e L)

Exercises 2.5b.  Translate each of the following paragraphs into arguments written in PL.  Then, derive

the conclusions of the arguments using the 18 rules and the method of conditional proof.

1. If Raul doesn’t play lacrosse, then he plays tennis. So, if Raul doesn’t play lacrosse, then he plays

either tennis or soccer.

2. It is not the case that either Polly or Ramon take out the trash. So, if Owen cleans his room, then Polly

takes out the trash only if Quinn clears the table.

3. If Sheldon writes a paper, then using the xerox machine is a necessary condition for Yessenia reading

it.  Yessenia doesn’t read it only if Sheldon doesn’t write it.  So, if Sheldon writes a paper, the he uses the

xerox machine.

4. If Adams and Barnes are translators, then Cooper is a reviewer.  Evans is an editor if either Cooper or

Durning are reviewers.  Hence, Adams being a translator is a sufficient condition for Barnes being a

translator only if Evans is an editor.
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5. If it’s not the case that there are frogs in the pond, then George will go swimming.  So if Eloise goes

swimming and George does not, then either there are frogs in the pond or hornets in the trees.

6. If Kip does well on his report card, then he will get ice cream.  If Kip doesn’t do well on his report

card, then he’ll be jealous of his brother.  So, Kip will either get ice cream or be jealous.

7. If Lisa goes to Arizona, then she’ll go to Colorado.  If she goes Boulder, CO, then she’ll go to

Dragoon, AZ.  So, if she goes to Arizona and Boulder, then she’ll go to Colorado and Dragoon.

8. If the train doesn’t come, then it is not the case that Shanti and Ricardo go to New York.  So, If Ricardo

goes to New York, then Shanti goes to New York only if the train comes.

9. Andrew buys Christmas presents only if Clara makes a list.  If Clara makes a list, the David will spell

check the list for her.  Either Clara doesn’t make a list or Belinda gets presents.  So, if Andrew buys

Christmas presents, then Belinda gets presents and David spell checked the list.

10. If Justin goes to Ikea, then Luke doesn’t go.  Either Luke goes to Ikea or Kate sleeps on the floor.  If

either Kate or Madeline sleep on the floor, then Justin goes to Ikea.  So, Justin goes to Ikea if, and only if,

Kate sleeps on the floor. 
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§2.6: Logical Truths

A theory is a set of sentences, which we call theorems.  A formal theory is a set of sentences of a

formal language.  We identify a theory strictly by its theorems.  A logical theory is thus characterized by

the set of its logical truths.  Logical truths are the theorems of our logical theory, just as certain geometric

statements are theorems of Euclidean geometry.

To get a feel for the nature of logical truths, compare 2.6.1, 2.6.2, and 2.6.3.

2.6.1 If it is raining, then I will be unhappy.

2.6.2 If it is raining, then I will get wet.

2.6.3 If it is raining, then it is raining.

Each of the three sentences is expressible in PL as ‘P e Q’.  But 2.6.1 and 2.6.2 are contingent

sentences.  The truth of 2.6.2 is more compelling, but it is still possible for both sentences to be false. 

2.6.3, on the other hand, can never be false, as long as we hold the meanings of the terms constant.  It is

more carefully regimented as ‘P e P’, and it is a logical truth, or a law of logic.

The logical truths of PL are tautologies.  We can show, using truth tables, for any wff whether it

is a tautology or not.  We just look for the wffs which are true in all rows of the truth table.  It would be

convenient if we also had a method of deriving them within our proof system.

Logical truths do not depend on any premises.  They are true no matter what assumptions we

make about the world, or whatever we take to be the content of our propositional variables.  Thus, we

should be able to prove logical truths using any premises, and even without any premises.

One way to derive a theorem with no premises, which we are not using, is to adopt a deductive

system which takes certain wffs as axioms.  Some theories, including any non-logical theory, are

axiomatic.  Axiomatic logical theories normally take a few tautologies as axiom schemas.  In such a

system, any sentence of the form of an axiom can be inserted into a derivation with no further

justification.  

Our logical theory has no axioms.  So far, in order to produce a derivation, we have needed to

take some assumptions as premises.  We have had no way to construct a derivation with no premises. 

Now we can use conditional proof to derive logical truths.  We can just start our derivation with an

assumption, as 2.6.4 does in showing that  ‘(P e Q) e [(Q e R) e (P e R)]’ is a logical truth.

2.6.4 *1. P e Q ACP

* *2. Q e R ACP

* *3. P e R 1, 2, HS

*4. (Q e R) e (P e R) 2-3, CP

5. (P e Q) e [(Q e R) e (P e R)] 1-4, CP

QED

Note that the last line of 2.6.4 is further un-indented than the first line, since the first line is

indented.  Lines 1-4 are all based on at least one assumption.  But, line 5 requires no assumption.  It is a

theorem of logic, a logical truth.

Derivations of logical truths can look awkward when you are first constructing them.  When the

logical truth has nested conditionals, as 2.6.4 does, setting up the assumptions can require care.  But such

logical truths are often simple to derive once they are set up properly.  Be careful not to use the assigned

proposition in the proof.  The conclusion is not part of the derivation until the very end.  

2.6.5 shows that ‘[P e (Q e R)] e [(P e Q) e (P e R)]’ is a logical truth.
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2.6.5 *1. P e (Q e R) ACP (to prove (P e Q) e (P e R))

* *2. P e Q ACP (to prove (P e R))

* * *3. P ACP (to prove R)

* * *4. Q e R 1, 3, MP

* * *5. Q 2, 3, MP

* * *6. R 4, 5, MP

* *7. P e R 3-6 CP

*8. (P e Q) e (P e R) 2-7, CP

9.  [P e (Q e R)] e [(P e Q) e (P e R)] 1-8, CP

QED

Until now, our derivations have required assumptions as premises.  Assumptions are usually

empirical, taken from observation.  Most of the premises of most of the arguments we have seen so far

have been contingencies, though we can take any kind of premise, even a contradiction, as an assumption.

Premises of arguments are generally not justified by the same methods which we use to justify

our system of logic.  Thus, the derivations we have done until this section may be seen as not purely

logical.  They are not, as they stand, proofs of logical conclusions.  They are merely derivations from

assumed premises to conclusions.  But, for every valid argument requiring premises, we can create a

proof of a purely logical truth.

2.6.6 1. P e (Q C R)

2. -R / -P

The argument 2.6.6 contains two assumptions, at premises 1 and 2.  To convert this argument to a

logical truth requiring no assumptions, we can construct a conditional statement with the former premises

as antecedents and the former conclusion as the consequent.  There are two options for how to construct

logical truths from any set of premises and a conclusion.  On the first option, we conjoin all of the

premises into one statement.  Then, we take that resulting conjunction as the antecedent of a complex

conditional with the conclusion as the consequent.  On the second option, we form a series of nested

conditionals, using each premises as an antecedent and the conclusion as the final consequent.  2.6.7

shows two the possibilities for turning 2.6.6 into a logical truth.

2.6.7 {[P e (Q C R)] C -R} e -P

[P e (Q C R)] e (-R e -P)

Note the equivalence between the results of the two options by one rule of exportation.  Each of

the propositions at 2.6.7 is a logical truth, which we show at 2.6.8 using CP.

2.6.8 *1. [P e (Q C R)] C -R ACP

*2. P e (Q C R) 1, Simp

*3. -R C [P e (Q C R)] 1, Com

*4. -R 3, Simp

*5. -R w -Q 4, Add

*6.  -Q w -R 5, Com

*7. -(Q C R) 6, DM

*8. -P 2, 7, MT

9. {[P e (Q C R)] C -R} e -P 1-8, CP

QED
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2.6.9 demonstrates the conversion of a longer argument into two logical truths.

2.6.9 1. P w Q

2. Q e (R C S)

3. -R

4. Q / T / P C -T

{{(P w Q) C [Q e (R C S)]} C [-R C (Q / T)]} e (P C -T)

(P w Q) e {[Q e (R C S)] e {-R e {(Q / T) e (P C -T)}}}

The relation between derivations requiring assumptions and their corresponding logical truths is

guaranteed by a meta-logical result called the Deduction Theorem.  The theorem may have been first

proved by Alfred Tarski in 1921, but the first published proof was by Jacques Herbrand in 1930.  The

arguments we have been deriving in this textbook are useful in applying logic to ordinary arguments. 

But, the logical truths are the logician's real interest, as they are the theorems of propositional logic.

The transformations we have made at the object-language level can also be made at the

metalinguistic level.  Our rules of inference are written in a metalanguage.  Any substitution instances of

the premises in our rules of inference entail a substitution instance of the conclusion.  We can similarly

convert all of our rules of inference.  2.6.10 shows how Modus Ponens can be written as a single sentence

of the metalanguage.  2.6.11 shows the same for Constructive Dilemma.

2.6.10 á e â

á / â

can be converted to:

[(á e â) C á] e â

2.6.11 (á e â) C (ã e ä)

á w ã / â w ä

can be converted to:

{[(á e â) C (ã e ä)] C (á w ã)} e (â w ä)

Any consistent substitution instance of these new forms, ones in which each metalinguistic

variable is replaced by the same wffs of the object language throughout, will be a logical truth. 

All ten rules of equivalence we have been using can easily be turned into templates for

constructing logical truths even more easily.  We can just replace the metalinguistic symbol ‘W’ with the

object-language symbol ‘/’, as in 2.6.12.

2.6.12 -(á w â) / (-á C -â)

(á e â) / (-á w â)

Again, any substitution instance of these forms will be a logical truth.  

These metalinguistic templates for logical truths are the kinds of rules one would adopt in an

axiomatic system of logic.  The templates are called axioms schemas.  In an axiomatic theory, we can
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adopt a small group axiom schemas along with modus ponens and a rule of substitution.  Such axiomatic

theories can be constructed to derive the same logical theorems, to have the same strength as our system

of logic.  Again, we are not using an axiomatic system, and so we will retain all eighteen rules, as well as

the direct, conditional, and indirect methods of proof, the last of which is the subject of our next section.

Exercises 2.6a.  Use conditional proof to derive each of the following logical truths.

1. [A w (B C C)] e (A w C)

2. [(A e B) C C] e (-B e -A)

3. (O w P) e [-(P w Q) e O]

4. [V C (W w X)] e (-X e W)

5. [(D e -E) C (F e E)] e [D e (-F w G)]

6. [(H e I) e -(I w -J)] e (-H e J)

7. [(W e X) C (Y w -X)] e [-(Z w Y) e -W]

8.  [(R C S) e U] e {-U e [R e (S e T)]}

9. [(-K e N) C -(N w L)] e [(K e L) e M]

10. [(D C E) e (F w G)] / [(-F C -G) e (-D w -E)]

Exercises 2.6b. Convert each of the following arguments to a logical truth.

1. 1. -A e B

2. -B / A

2. 1. - C w D

2. C / D

3. 1. E C (F w G)

2. -E / G

4. 1. -(H w I)

2. J e I / -J

5. 1. K C (-L w M)

2. L e -K / M

6. 1. N e (P C Q)

2. -(O w P) / -N

7. 1. R e S

2. S e T

3. -(T w U) / -R

8. 1. V e W

2. -W w X

3. V C (Y C Z) / X

9. 1. A w (B C C)

2. A e D

3. -(D w E) / C

10. 1. F e G

2. H e F

3. H C I / -G e I
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§2.7: Indirect Proof

We have seen two methods of proof, now, the direct and conditional.  Lastly for our proof system

we have a method of indirect proof.  We can see the justification for indirect proof by considering the

arguments 2.7.1 and 2.7.2.

2.7.1 1. A C -A / B

2. A 1, Simp

3. A w B 2, Add

4. -A C A 1, Com

5. -A 4, Simp

6. B 3, 5, DS

QED

2.7.2 1. B e (P C -P) / -B

*2. B ACP

*3. P C -P 1, 2, MP

*4. P 3, Simp

*5. P w -B 4, Add

*6. -P C P 3, Com

*7. -P 6, Simp

*8. -B 5, 7, DS

9. B e -B 2-8, CP

10. -B w -B 9, Impl

11. -B 10, Taut

QED

We can infer an interesting moral from each of these arguments.  The moral of 2.7.1, which is an

instance of what logicians call explosion, is that anything follows from a contradiction.  The moral of

2.7.2 is that if a statement entails a contradiction, then its negation is true.  Indirect proof is based on these

two morals.

Indirect proof is also called reductio ad absurdum, or just reductio.  To use an indirect proof,

assume your desired conclusion is false, and try to get a contradiction.  If you get it, then you know the

negation of your assumption is true.

Method for Indirect Proof

1. Indent, assuming the opposite of what you want to conclude

2. Derive a contradiction, using any wff.

3. Discharge the negation of your assumption.

The last line of an indented sequence for indirect proof is always a contradiction.  A contradiction

is any statement of the form á C -á.  The wffs listed in 2.7.3 are all contradictions.

2.7.3 P C- P

--P C ---P

-(Pw -Q) C --(P w -Q)
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We can assume any wff we want in a derivation.  But, only certain assumptions will discharge in

the desired way.  For CP, we assume the antecedent of a desired conditional because when we discharge,

the first line of the assumption becomes the antecedent of the resulting conditional.  For IP, we always

discharge the first line of the proof with one more tilde.  Thus, if we wish to prove the negation of a

formula, it is perfectly legitimate to assume the formula itself.

2.7.4 is a sample derivation using IP.  At line 3, we are considering what would follow if the

opposite of the conclusion is true.  At line 6, we have found a contradiction, and so we discharge our

assumption at line 7.

2.7.4 1. A e B

2. A e -B /-A

*3. A AIP

*4. B 1, 3, MP

*5. -B 2, 3, MP

*6. B C -B 4, 5, Conj

7. -A 3-6, IP

QED

Since the discharge step of an indirect proof requires an extra -, we often need to use DN at the

end of an indirect proof, as in 2.7.5.

2.7.5 1. F e -D

2. D

3. (D C -E) e F / E

*4. -E AIP

*5. D C -E 2, 4, Conj

*6. F 3, 5, MP

*7. -D 1, 6, MP

*8. D C -D 2, 7, Conj

9. --E 4-8, CP

10. E 9, DN

QED

In addition to deriving simple statements and negations, the method of indirect proof is especially

useful for proving disjunctions, as in 2.7.6  Assuming the negation of a disjunction leads quickly, by DM,

to two conjuncts that you can simplify.
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2.7.6 1. -A e (B e C)

2. C e D

3. B / A w D

*4. -(A w D) AIP

*5. -A C -D 4, DM

*6. -A 5, Simp

*7. B e C 1, 6, MP

*8. -D C -A 5, Com

*9. -D 8, Simp

*10. -C 2, 9, MT

*11. C 7, 3, MP

*12. C C -C 11, 10, Conj

13. --(A w D) 4-12, IP

14. A w D 13, DN

QED

Indirect proof is compatible with conditional proof.  Indeed, the fundamental structure of many

proofs in mathematics involves making some assumptions and then assuming the opposite of what you

want to prove in order to yield a contradiction.  2.7.7 is a formal example of exactly this procedure.

2.7.7 1. E e (A C D)

2. B e E / (E w B) e A

*3. E w B ACP

* *4. -A AIP

* *5. -A w -D 4, Add

* *6. -(A C D) 5, DM

* *7. -E 1, 6, MT

* *8. B 3, 7, DS

* *9. -B 2, 7, MT

* *10. B C -B 8, 9, Conj

*11. --A 4-10, IP

*12. A 11, DN

12. (E w B) e A 3-12, CP

QED

Like conditional proof, the method of indirect proof is easily adapted to proving logical truths. 

To prove that ‘-[(X / Y) C -(X w -Y)]’ is a logical truth, as in 2.7.8, we again start with an assumption,

the opposite of the theorem we wish to prove.
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2.7.8 *1. (X / Y) C -(X w -Y) AIP

*2. X / Y 1, Simp

*3. (X e Y) C (Y e X) 2, Equiv

*4. -(X w -Y) 1, Com, Simp

*5. -X C Y 4, DM DN

*6. Y e X 3, Com, Simp

*7. -X 5, Simp

*8. -Y 6, 7, MT

*9. Y 5, Com, Simp

*10. Y C -Y 9, 8, Conj

11. -[(X / Y) C -(X w -Y)] 1-10, IP

QED

2.7.9 is another example of using IP to derive a logical truth, ‘(P e Q) w (-Q e P)’.

2.7.9 *1. -[(P e Q) w (-Q e P)] AIP

*2. -(P e Q) C -(-Q e P) 1, DM

*3. -(P e Q) 2, Simp

*4. -(-P w Q) 3, Impl

*5. P C -Q 4, DM, DN

*6. -(-Q e P) 2, Com, Simp

*7. -(Q w P) 6, Impl, DN

*8. -Q C -P 7, DM

*9. P 5, Simp

*10. -P 8, Com, Simp

*11. P C -P 9, 10, Conj

12. (P e Q) w (-Q e P) 1-11, IP

QED

Here are some hints to help determine whether to use conditional proof or indirect proof to derive

a logical truth.  

If the main operator is a conditional or a biconditional, generally use conditional proof.

If the main operator is a disjunction or a negation, generally use indirect proof.  

If the main operator is a conjunction, we look to the main operators of each conjunct to

determine the best method of proof.

We can nest proofs of logical truths inside a larger proof, as intermediate steps, as in 2.7.10. 

Notice that the antecedents of the conditionals on lines 4 and 10 are logical truths.



Marcus, What Follows, page 99

2.7.10 1. B e [(D e D) e E]

2. E e {[F e (G e F)] e (H C -H)} / -B

*3. B AIP

*4. (D e D) e E 1, 3, MP

*5. D ACP

*6. D e D 5, CP

*7. E 4, 6, MP

*8. [F e (G e F)] e (H C -H) 2, 7, MP

* *9. F ACP

* *10. F w -G 9, Add

* *11. -G w F 10, Com

* *12. G e F 11, Impl

*13. F e (G e F) 9-12, CP

*14. H C -H 8, 13, MP

15. -B 3-14, IP

QED

Exercises 2.7a.  Use any of the eighteen rules, conditional proof and/or indirect proof to derive the

conclusions of the following arguments. 

1. 1. U e (V w W)

2. -(W w V) / -U

2. 1. Y w -Z

2. Z C (-X w W) / X e Y

3. 1. X e T

2. Y e T

3. T e Z / (X w Y) e Z

4. 1. A e B

2. -(C w -A) / B

5. 1. S e T

2. S w (-R C U) / R e T

6. 1. F e (E w D)

2. -E C (-D w -F) / -F

7. 1. -(K C J)

2. I w (L C J) / -K w I

8. 1. X e (W e Z)

2. Y w W / -Y e (X e Z)

9. 1. M e L

2. -(K C N) e (M w L) / K w L
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10. 1. A / (B C D)

2. C e (E w F)

3. (A w -E) C (A w -F) / C e B

11. 1. H e G

2. H w J

3. -(J w -I) / G C I

12. 1. X e Y

2. -(Z e W) / X e (Y C Z)

13. 1. M e (L C -P)

2. K e -(O C -P)

3. N e -O / (K C M) e -N

14. 1. A e B

2. -C e -(A w -D)

3. -D w (B C C) / A e (B C C)

15. 1. P / (Q w -R)

2. T C -(Q C P) / -(P C R)

16. 1. A / -(B w C)

2. (D w E) e -C

3. -(A C D) / D e B

17. 1. U e (P C -Q)

2. T e (S w U)

3. -T e -R / (P e Q) e (R e S)

18. 1. B e C

2. E / -(B w A)

3. D e -E / D e (A w C)

19. 1. Z e Y

2. Z w W

3. Y e -W

4. W / -X / X / Y

20. 1. F e (K / M)

2. -F e [L e (F / H)]

3. -(M w -L)

4. -H e -(-K C L) / F / H
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Exercises 2.7b.  Translate each of the following paragraphs into arguments written in PL.  Then, derive

the conclusions of the arguments using any of the eighteen rules, conditional proof and/or indirect proof. 

1. If Lorena makes quiche, then she’ll make potatoes.  She either doesn’t make potatoes or doesn’t make

quiche.  So, she doesn’t make quiche. 

2. Stephanie either plays miniature golf and not netball, or she goes to the ocean.  She doesn’t play

miniature golf.  So, she goes to the ocean. 

3. If Grady eats quickly, then he’ll get hiccups.  If he gets hiccups, then he’ll suck on an ice cube and will

not eat quickly.  So Grady doesn’t eat quickly. 

4. Julian goes fishing only if Kevin wakes him up.  Julian goes fishing alone unless Liam and Julian go

fishing together.  So, Kevin wakes Julian up.

5. If either Xander or Yael go to the water park, then Vivian will go.  Winston going to the water park is

sufficient for Vivian not to go.  So, If Winston goes to the water park, then Xander will not. 

6. If Esme grows olives, then she grows mangoes.  She grows either olives or nectarines.  So, she grows

either mangoes or nectarines.

7. Having gorillas at the circus entails that there are elephants.  There are either gorillas or hippos. 

Having fancy ponies means that there are no hippos.  Thus either there are elephants or there are no fancy

ponies.

8. Owen will be happier if and only if he either practices the cello or quits music lessons.  It is not that

case that if Owen quits music lessons then he’ll be happier.  So, it is not the case that he both never sleeps

and practices. 

9. If the house is painted ivory and not green, then it will appear friendly.  The neighbors are either happy

or jealous.  If the neighbors are jealous, then the house will be painted ivory.  So, if it is not the case that

either the house appears friendly or it is painted green, then the neighbors will be happy.

10. If tanks tops are worn is school, then the rules are not enforced.  It is not the case that either short

skirts or very high heels are in the dress code.  Tank tops are worn in school, and either uniforms are

taken into consideration or the rules are not enforced.  So, it is not the case that either the rules are

enforced or shirt skirts are in the dress code. 
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Appendix: Proofs of the Logical Equivalence of Eight Rules of Equivalence

De Morgan’s Rules: -(á w â)   W   -á C -â

- (á w â)

0 1 1 1

0 1 1 0

0 0 1 1

1 0 0 0

- á C - â

0 1 0 0 1

0 1 0 1 0

1 0 0 0 1

1 0 1 1 0

De Morgan’s Rules: -(á C â)   W   -á w -â

- (á C â)

0  1 1  1

1  1 0  0

1  0 0  1

1  0 0  0

- á w - â

0 1 0 0 1

0 1 1 1 0

1 0 1 0 1

1 0 1 1 0

Association: á w (â w ã)  W  (á w â) w ã

á w (â w ã)

1 1  1 1  1

1 1  1 1  0

1 1  0 1  1

1 1  0 0  0

0 1  1 1  1

0 1  1 1  0

0 1  0 1  1

0 0  0 0  0

(á w â) w ã

 1 1  1 1 1

 1 1  1 1 0

 1 1  0 1 1

 1 1  0 1 0

 0 1  1 1 1

 0 1  1 1 0

 0 0  0 1 1

 0 0  0 0 0
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Association: á C (â C ã)  W  (á C â) C ã

á C (â C ã)

1 1  1 1  1

1 0  1 0  0

1 0  0 0  1

1 0  0 0  0

0 0  1 1  1

0 0  1 0  0

0 0  0 0  1

0 0  0 0  0

(á C â) C ã

 1 1  1 1 1

 1 1  1 0 0

 1 0  0 0 1

 1 0  0 0 0

 0 0  1 0 1

 0 0  1 0 0

 0 0  0 0 1

 0 0  0 0 0

Distribution: á w (â C ã)  W  (á w â) C (á w ã)

á w (â C ã)

1 1  1 1  1

1 1  1 0  0

1 1  0 0  1

1 1  0 0  0

0 1  1 1  1

0 0  1 0  0

0 0  0 0  1

0 0  0 0  0

(á w â) C (á w ã)

 1 1  1 1  1 1  1

 1 1  1 1  1 1  0

 1 1  0 1  1 1  1

 1 1  0 1  1 1  0

 0 1  1 1  0 1  1

 0 1  1 0  0 0  0

 0 0  0 0  0 1  1

 0 0  0 0  0 0  0

Distribution: á C (â w ã)  W  (á C â) w (á C ã)

á C (â w ã)

1 1  1 1  1

1 1  1 1  0

1 1  0 1  1

1 0  0 0  0

0 0  1 1  1

0 0  1 1  0

0 0  0 1  1

0 0  0 0  0

(á C â) w (á C ã)

 1 1  1 1  1 1  1

 1 1  1 1  1 0  0

 1 0  0 1  1 1  1

 1 0  0 0  1 0  0

 0 0  1 0  0 0  1

 0 0  1 0  0 0  0

 0 0  0 0  0 0  1

 0 0  0 0  0 0  0
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Contraposition: á e â  W  -â e -á

á e â

1 1 1

1 0 0

0 1 1

0 1 0

- â  e - á

0 1  1 0 1

1 0  0 0 1

0 1  1 1 0

1 0  1 1 0

Material Implication: á e â  W  -á w â

á e â

1 1 1

1 0 0

0 1 1

0 1 0

- á w â

0 1 1 1

0 1 0 0

1 0 1 1

1 0 1 0

Material Equivalence: á / â   W   (á e â) C (â e á)

á / â

1 1 1

1 0 0

0 0 1

0 1 0

(á e â) C (â e á)

 1 1  1 1  1 1  1

 1 0  0 0  0 1  1

 0 1  1 0  1 0  0

 0 1  0 1  0 1  0

Material Equivalence: á / â   W   (á C â) w (-á C -â)

á / â

1 1 1

1 0 0

0 0 1

0 1 0

(á C â) w (- á C - â)

 1 1  1 1  0 1 0 0 1

 1 0  0 0  0 1 0 1 0

 0 0  1 0  1 0 0 0 1

 0 0  0 1  1 0 1 1 0
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Exportation: (á  C â) e ã   W   á e (â e ã)

(á C â) e ã

 1 1  1 1 1

 1 1  1 0 0

 1 0  0 1 1

 1 0  0 1 0

 0 0  1 1 1

 0 0  1 1 0

 0 0  0 1 1

 0 0  0 1 0

á e (â e ã)

1 1  1 1  1

1 0  1 0  0

1 1  0 1  1

1 1  0 1  0

0 1  1 1  1

0 1  1 0  0

0 1  0 1  1

0 1  0 1  0

Tautology: á  W  á w á Tautology: á  W  á C á

á w á

1 1 1

0 0 0

á C á

1 1 1

0 0 0
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Chapter 3: Predicate Logic

§3.1: Translation

We started our study of logic with a casual understanding of what follows from what.  Intuitively,

a valid argument is one in which the truth of the premises ensures the truth of the conclusion.  Then, we

explored a semantic definition of validity, in Chapter 1, and a proof system based on that semantic

definition, in Chapter 2.  Our formal notion of validity for propositional logic captures many intuitively-

valid inferences.  But it does not capture all of them.  For example, argument 3.1.1 is intuitively valid.

3.1.1 All philosophers are happy.

Emily is a philosopher.

So, Emily is happy.

But our test for logical validity in propositional logic is of no help.

3.1.2 P

Q / R

The rules for validity for propositional logic are thus insufficient as a general characterization of

logical consequence.  PL captures entailments among propositions.  The entailments in 3.1.1 are within

the simple propositions.  Thus, we need a logic that explores logical relations inside propositions, not

merely those between propositions.  Quantificational, or predicate, logic does just that.

In PL, we use the following vocabulary.

Capital English letters for simple statements

Five connectives

Punctuation (brackets)

In predicate logic, we extend the vocabulary.  We retain the same connectives and punctuation. 

But, the terms are more complex, revealing some sub-propositional content.

Complex statements made of objects and predicates

Quantifiers

Five connectives

Punctuation

For propositional logic, we used one language, PL, and one system of inference.  For predicate

logic, we will explore several different languages and proof systems.  We’ll start this section with a

general characterization of predicate logic.  Then we will proceed to focus on a simple language, which I

will call M , for monadic predicate logic.

Objects and Predicates

In all predicate logic, we represent objects using lower-case letters.

a, b, c,...u stand for specific objects and are called constants.

v, w, x, y, z are used as variables.

In M , we represent properties of objects using capital letters, called predicates.  Predicates are

placed in front of object letters.  ‘Pa’ is used to say that object a has property P, and is said “P of a.”  A

predicate of M  followed by a constant is called a closed sentence.  3.1.3 shows some closed sentences.  
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3.1.3 Alicia is clever. Ca

Baruch plays chess. Pb

Carlos is tall. Tc

A predicate followed by a variable is called an open sentence.  3.1.4 shows some open sentences. 

Notice that closed sentences express what we might call a complete proposition whereas open sentences

do not.  Indeed, they are not easily expressed in English.

3.1.4 v is admirable Av

w is bold Bw

x is courteous Cx

The predicates used in 3.1.3 and 3.1.4, and generally in M , are called one-place predicates since

they are followed by only one object.  In §3.8, we will extend our uses of predicates, using capital letters

also to stand for relations among various objects. 

Returning to 3.1.1, we can now regiment the second premise and the conclusion.

Pe Emily is a philosopher

He Emily is happy

To finish regimenting the argument, to regiment the first premise, we need a quantifier.

Quantifiers

The subject of ‘All philosophers are happy’ is not a specific philosopher.  No specific object is

mentioned.  Similarly in, ‘Something is made in the USA’, there is no specific thing to which the sentence

refers.  For sentences like these, we use quantifiers.  There are two kinds of quantifiers: existential and

universal.  We will use five existential quantifiers.

(�x), (�y), (�z), (�w), (�v)

Existential quantifiers are used to represent expressions like the following.

There exists a thing such that

For some thing

There is a thing

For at least one thing

Something

We will also use five, parallel universal quantifiers.

(�x), (�y), (�z), (�w), (�v)

Universal quantifiers are used to represent expressions like the following.

For all x

Everything
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Some terms, like ‘anything’, can indicate either an existential or universal quantifier, depending

on the context.  

3.1.5 If anything is missing, you’ll be sorry.

3.1.6 Anything goes.

In 3.1.5, we use an existential quantifier.  ‘Anything’ in that case indicates ‘something’: If

something is missing, then you’ll be sorry.  In 3.1.6, we use a universal quantifier, since that sentence

expresses that everything is acceptable.  To know whether to use an existential or universal quantifier in

cases where a quantifier is called for, you will have to judge from the context of the use.

Here are some examples of simple translations using quantifiers.

3.1.7 Something is made in the USA (�x)Ux

3.1.8 Everything is made in the USA (�x)Ux

3.1.9 Nothing is made in the USA (�x)-Ux or -(�x)Ux

Notice that statements with quantifiers and negations, like 3.1.9, can be translated in at least two

different ways.  We can say that everything lacks a property or that it is not the case that something has

the property.

Most English sentences are best translated using at least two predicates.  Very roughly, we can

consider many sentences to contain grammatical subjects and grammatical predicates.  The grammatical

subject is what the sentence is about.  The grammatical predicate is what the sentence says about its

grammatical subject.  For example, in ‘Mind-body materialists are chauvinists’, the grammatical subject

is ‘mind-body materialists’ and the grammatical predicate is ‘are chauvinists’.

When regimenting such sentences, it is typical to use one or more predicate for the grammatical

subject of the sentence and another predicate (or more than one) for the grammatical predicate of the

sentence.  Between the two predicates, there will be a connective.  Universally-quantified propositions

tend to use conditionals as the operator between the two predicates.  Existentially-quantified propositions

usually use conjunctions between the two predicates.  But these are not absolute rules.

3.1.10 All persons are mortal. (�x)(Px e Mx)

3.1.11 Some actors are vain. (�x)(Ax C Vx)

3.1.12 Some gods aren’t mortal. (�x)(Gx C -Mx)

3.1.13 No frogs are people. (�x)(Fx e -Px) or -(�x)(Fx C Px)

Propositions with more than two predicates

The standard, quantified sentence in M  will have a grammatical subject and a grammatical

predicate separated by either a conjunction or a conditional.  But many grammatical subjects and

predicates will themselves be complex.  3.1.14 and 3.1.15 have more than one predicate in the

grammatical-subject portion of the proposition.

3.1.14 Some wooden desks are uncomfortable. (�x)[(Wx C Dx) C -Cx]

3.1.15 All wooden desks are uncomfortable. (�x)[(Wx C Dx) e -Cx]

3.1.16 and 3.1.17 have more than one predicate in the grammatical-predicate part of the

proposition.

3.1.16 Many applicants are untrained or inexperienced. (�x)[Ax C (-Tx w -Ex)]

3.1.17 All applicants are untrained or inexperienced. (�x)[Ax e (-Tx w -Ex)]

When regimenting into predicate logic, start by asking whether the sentence is universal or
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existential.  Then, it is often helpful to think of a sentence in terms of the ordinary rules of subject-

predicate grammar.  What are we talking about?  That’s the grammatical-subject portion of the

proposition.  What are we saying about it?  That’s the grammatical-predicate portion.  The ‘what we are

talking about’ goes as the antecedent in the universally quantified statement, and as the first conjunct in

the existentially quantified statement.  The ‘what we are saying about it’ goes as the consequent or as the

second conjunct.

Only

‘Only’ usually indicates a universal quantifier, but translations using ‘only’ can be tricky.  

3.1.18 Only men have been presidents.

3.1.18 claims that if something has been a president, it must have been a man; all presidents have

been men.  Thus, it should be equivalent to 3.1.19

3.1.19 All presidents have been men.

In other words, ‘only Ps are Qs’ is logically equivalent to ‘all Qs are Ps’.  Thus, in some simple

cases, we can just invert the antecedent and consequent of a parallel sentence that uses ‘all’.  Start with

the related ‘all’ sentence, like 3.1.20.  Then take the converse to find the ‘only’ sentence.

3.1.20 All men have been presidents. (�x)(Mx e Px)

3.1.21 Only men have been presidents. (�x)(Px e Mx)

When sentences get more complex, the rule of just switching antecedent and consequent between

an ‘all’ sentence and its correlated ‘only’ sentence has to be adjusted.  3.1.22 is standardly regimented as

3.1.23.  

3.1.22 All intelligent students understand Kant.

3.1.23 (�x)[(Ix C Sx) e Ux]

But, if we regiment 3.1.24 merely by taking the converse of the conditional in 3.1.23, we get

3.1.25.

3.1.24 Only intelligent students understand Kant

3.1.25 (�x)[Ux e (Ix C Sx)]

3.1.25 says that anyone who understands Kant must be an intelligent student.  It follows from that

regimentation that I don’t understand Kant, since I am no longer a student.  Now, I am not sure whether I

understand Kant, but whether I do is not a logical consequence of 3.1.24.

Ordinarily, the preferred regimentation of 3.1.24 is 3.1.26, which says that any student who

understands Kant is intelligent.  

3.1.26 (�x)[(Ux C Sx) e Ix)]

3.1.26 is a reasonable thing to say.  When regimenting, we need not assume that everything that is

said is reasonable; that’s surely a false assumption.  But, it is customary and charitable to presume

reasonableness unless we have good reason not to.

I said that to regiment sentences into predicate logic, we think of them as divided into

grammatical-subject and grammatical-predicate.  In universally-quantified sentences, there is a horseshoe

between the grammatical-subject portion or the proposition and the grammatical-predicate portion.  In
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existential sentences, we use a conjunction.  In sentences like 3.1.22, the grammatical-subject portion of

the sentence has both a subordinate subject (‘x is a student’) and a subordinate attribute (‘x is intelligent’);

there is a single predicated attribute (‘x understands Kant’).  The relation between the only-quantified

sentence and its corresponding all-quantified sentence is that the subordinate attribute is switched with the

main attribute, but the subordinate subject remains where it is, in the antecedent.  Thus, an amended rule

could be that if an only-quantified sentence uses only two predicates, you can just switch the antecedent

and consequent from the sentence which results from replacing ‘all’ for ‘only’; but if it contains a

subordinate subject and attribute in the subject portion of the sentence, then you should just switch the

two attributes (‘x is intelligent’ and ‘x understands Kant’), leaving the subordinate subject alone.

3.1.27 ‘Only PQs are R’ is ordinarily the same as ‘All RQs are P’

3.1.27 is a good general rule, almost always applicable.  But, there are exceptions, and some

sentences may be ambiguous.  It is not especially clear whether 3.1.28 is best regimented as 3.1.29 or as

3.1.30.

3.1.28 Only famous men have been presidents.

3.1.29 (�x)[(Px e (Mx C Fx)]

3.1.30 (�x)[(Px C Mx) e Fx]

3.1.29 and 3.1.30 are not logically equivalent.  3.1.29 says that if something is a president, then it

is a famous man.  3.1.30 says that if something is a male president, then it is famous.  Imagine a situation

in which there are both men and women presidents.  Of the women presidents, some have been famous,

and some have been obscure.  But, all of the men who have been president have been famous.  In such a

case, we would favor the second regimentation.  But, if we take ‘president’ to refer to presidents of the

United States, the former regimentation is better.  Extra-logical information, and not the grammar of the

sentence, may favor 3.1.29.

Still, we could imagine a case in which 3.1.30 is the intended interpretation.  Consider if we had

some men presidents and some women presidents, but the men have all been famous and some of the

women have been obscure.  Then, we might use 3.1.29, with a bit of an inflection on ‘men’, to say that of

the male presidents, all of them have been famous, but of the women, some have been famous and some

have not.  3.1.31 is a good exception to the rule 3.1.27; my thanks to Marianne Janack for the example. 

Since one must hold a ticket to win the lottery, ‘winners of the lottery who are ticket-holders’ is

redundant.  The better regimentation is 3.1.32.

3.1.31 Only probability-challenged ticket-holders win the lottery.

3.1.32 (�x)[Wx e (Px C Tx)]

Propositions with more than one quantifier

Some propositions will contain more than one quantifer.  The main operator of such sentences

can be any of the four binary connectives, or the negation.

3.1.33 If anything is damaged, then everyone in the house complains.

(�x)Dx e (�x)[(Ix C Px) e Cx]

3.1.34 Either all the gears are broken, or a cylinder is missing.

(�x)(Gx e Bx) w (�x)(Cx C Mx)

3.1.35 Some philosophers are realists, while other philosophers are fictionalists.

(�x)(Px C Rx) C (�x)(Px C Fx)

3.1.36 It’s not the case that all conventionalists are logical empiricists if and only if

some holists are conventionalists.

-[(�x)(Cx e Lx) / (�x)(Hx e Cx)]
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Exercises 3.1a. Translate each sentence into predicate logic.

1. Anderson is tall.

2. Belinda sings well.

3. Deanna drives to New York city.

4. The Getty Museum is located in Los Angeles.

5. Snowy is called Milou in Belgium.

6. Cortez and Guillermo go to the gym after

school.

7. Either Hilda makes dinner or Ian does.

8. Jenna doesn’t run for class president.

9. Ken doesn’t walk to school when it rains.

10. Either Lauren or Megan buys lunch.

11. Nate and Orlando play in the college orchestra.

12. Paco will play football only if he’s not injured.

13. Ramona plays volleyball if, and only if, she sets

up the net.

14. If Salvador invests all his money in the stock

market, then he takes a second job.

15. Hamilton College is closed if and only if

President Stewart invokes the closure policy.

Exercises 3.1b. Translate each sentence into predicate logic.

1. All computers are difficult to program. (Cx,

Dx)

2. All mammals feed their young. (Mx, Fx)

3. Some trees are green. (Tx, Gx)

4. Some flowers do not bloom. (Fx, Bx)

5. Some cherries are red. (Cx, Rx)

6. Every fruit has seeds. (Fx, Sx)

7. A few people walk fast. (Px, Wx)

8. Not all buses are yellow. (Bx, Yx)

9. A cloud is not fluffy. (Cx, Fx)

10. Every mistake is a lesson. (Mx, Lx)

11. Some blankets are not soft. (Bx, Sx)

12. Nothing worthwhile is easy. (Wx, Ex)

13. Most planes are safe. (Px, Sx)

14. Some doctors are not smart. (Dx, Sx)

15. All humans have a mother. (Hx, Mx)

16. Some mountains are not difficult to climb. (Mx,

Dx)

17. Not all snakes are poisonous. (Sx, Px)

18. Some spiders are not harmful. (Sx, Hx)

19. No dog has antennae. (Dx, Ax)

20. No lions are not carnivorous. (Lx, Cx)

Exercises 3.1c. Translate each sentence into predicate logic.

1. Some pink flowers are fragrant. (Px, Fx, Sx)

2. Some pink flowers are not fragrant.

3. All red flowers are fragrant. (Rx, Fx, Sx)

4. No orange flowers are fragrant. (Ox, Fx, Sx)

5. Some people are intelligent but not friendly.

(Px, Ix, Fx)

6. All friendly people succeed. (Fx, Px, Sx)

7. No friendly people commit crimes. (Fx, Px,

Cx)

8. All cats and dogs have whiskers. (Cx, Dx,

Wx)

9. Some cats and all dogs have pointed ears.

(Cx, Dx, Ex)

10. Not all dogs and cats like humans. (Dx, Cx,

Lx)

11. Some brown rats are kept as pets. (Bx, Rx, Kx)

12. No brown rats are used in experiments. (Bx, Rx,

Ux)

13. Not all brown rats are dirty. (Bx, Rx, Dx)

14. Some American politicians are immoral. (Ax,

Px, Ix)

15. A few American politicians went to ivy league

colleges. (Ax, Px, Cx)

16. All presidents are American politicians. (Px,

Ax, Lx)

17. Some talented athletes don’t receive

scholarships. (Tx, Ax, Sx)

18. All talented athletes work hard. (Tx, Ax, Wx)

19. Some athletes have talent if and only if they

have determination. (Ax, Tx, Dx)
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20. Only talented athletes play professional

basketball. (Tx, Ax, Px)

21. Some prime numbers are even. (Px, Nx, Ex)

22. Not all prime numbers are odd. (Px, Nx, Ox)

23. If all prime numbers are odd, then no prime

numbers are even. (Px, Nx, Ox, Ex)

24. Only scientists work in labs. (Sx, Lx)

25. All scientists who work in labs have

graduated college. (Sx, Lx, Gx)

26. Goats and cows produce milk. (Gx, Cx, Mx)

27. All goats and some cows have horns. (Gx,

Cx, Hx)

28. Only short poems rhyme. (Sx, Px, Rx)

29. All successful poets are either creative or

hard-working. (Sx, Px, Cx, Hx)

30. Some successful poets are creative but not

imaginative. (Sx, Px, Cx, Ix)

31. Either everyone plays water polo or some

people go to the concert. (Px, Wx, Cx)

32. Only water polo players are good swimmers.

(Wx, Sx)

33. Everyone plays water polo only if they can

swim. (Px, Wx, Sx)

34. No one plays soccer unless there is a referee.

(Px, Sx, Rx)

35. If any coaches play soccer and some players

are interested, then some players will

play on a team. (Cx, Sx, Px, Ix, Tx)

36. All safe horses are calm. (Sx, Hx, Cx)

37. Only safe horses are calm.

38. Only calm horses are safe.

39. All undercooked chicken can give you food

poisoning. (Ux, Cx, Px)

40. Only undercooked chicken can give you food

poisoning.

41. Not all undercooked food can give you food

poisoning. (Ux, Fx, Px)

42. Not all extreme sports are dangerous. (Ex, Sx,

Dx)

43. Only sports which are not extreme are not

dangerous.   

44. Every student is healthy unless some student is

sick. (Sx, Hx, Ix)

45. A horse is calm if, and only if, it has been well-

trained and has a good life. (Hx, Cx, Tx,

Gx)

46. Bees and wasps make honey and have stingers.

(Bx, Wx, Hx, Sx)

47. If some people have allergies, then some

companies make money. (Px, Ax, Cx, Mx)

48. Spiders are poisonous only if they have venom

and large fangs. (Sx, Px, Vx, Fx)

49. Some spiders are poisonous and most people

are scared of spiders. (Sx, Dx, Px, Fx)

50. Some black rats and all white rats are used in

experiments. (Bx, Rx, Wx, Ux)

51. If any teachers are boring and some students are

lazy, then some students will not graduate.

(Tx, Bx, Sx, Lx, Gx)

52. No jacket is warm unless it has been lined. (Jx,

Wx, Lx)

53. A class is productive if, and only if, the material

is challenging and students do not

procrastinate. (Cx, Px, Mx, Wx)
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§3.2: A Family of Predicate Logics

We are starting our study of predicate logic by considering a simple language: monadic predicate

logic, or M .  Predicate logic is monadic if the predicates take only one object.  §3.1 - §3.7 focus nearly

exclusively on M .

When predicates take more than one object, we call them relational and we call the resulting

language full first-order predicate logic, or F.  We use F (or some further extension of F) from §3.8 to the

end of the chapter.

In constructing a formal language, we first specify the language, and then rules for wffs.  When

we studied propositional logic, we dove right into the full version of the language and its formation rules. 

Then we used the language in a derivation system.  For predicate logic, we proceed more cautiously. 

Each time we extend the logic, we will generate a slightly new language, with slightly new formation

rules.  Here are the names of each of the formal languages in this book:

PL: Propositional Logic

M : Monadic First-Order Predicate logic

F: Full First-Order Predicate logic

FF: Full First-Order Predicate logic with functors

S: Second-Order Predicate logic

Another difference between our study of propositional logic and our study of predicate logic is

that in this chapter on predicate logic, we will see the difference between a logical language and a system

of deduction.  In propositional logic, we used one language and one set of inference rules.  The language

and the deductive system are distinct.  We can use the same language in different deductive systems and

we can use the same deductive system with different languages.  We will use M  and F with the same

deductive system.  Then, we will add new inference rules covering a special identity predicate.  It is

typical to name both the deductive systems and the languages, but we need not do so.  I will name only

the different languages.  Let’s proceed to the formal characterization of M .

Vocabulary of M

Capital letters A...Z used as one-place predicates

Lower case letters used as singular terms

a, b, c,...u are used as constants.

v, w, x, y, z are used as variables.

Five connectives: -, C, w, e /

Quantifier symbols: �, �

Punctuation: (), [], {}

Constants and variables are called singular terms.  Some first-order systems allow propositional

variables like the ones we used in PL.  We could allow capital letters with no constants or variables

directly following them to be propositional variables, as if they were zero-place predicates.  But we will

not use them.

In order to use quantifers properly, one has to be sensitive to their scope.  The quantifiers in 3.2.1

and 3.2.2 have different scope.

3.2.1 (�x)(Px e Qx) Every P is Q

3.2.2 (�x)Px e Qx If everything is P, then x is Q

We have already tacitly seen the notion of scope in using negations.
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The scope of a negation (in PL) is whatever directly follows the tilde.

If what follows the tilde is a single propositional variable, then the scope of the negation

is just that propositional variable.

If what follows the tilde is another tilde, then the scope of the first (outside) negation is

the scope of the second (inside) negation plus that inside tilde.

If what follows the tilde is a bracket, then the entire formula which occurs between the

opening and closing of that bracket is in the scope of the negation.

3.2.3 -{(P C Q) e [-R w --(S / T)]}

There are four tildes in 3.2.3.  The first one has broadest scope.  Since what follows it is a

bracket, the rest of the formula, everything enclosed in the squiggly brackets, is in the scope of the

leading negation.  The second tilde in the formula, which occurs just in front of the ‘R’, has narrow scope. 

It applies only to the ‘R’.  The third tilde in the formula has ‘-(S / T)’ in its scope.  The fourth tilde has

‘(S / T)’ in its scope.

Similarly, the scope of a quantifier is whatever formula immediately follows the quantifier.

If what follows the quantifier is a bracket, then any formulas that occur until that bracket

is closed are in the scope of the quantifier.

If what follows the quantifier is a tilde, then the tilde and every formula in its scope is in

the scope of the quantifier.

If what follows the quantifier is another quantifier, then the inside quantifier and every

formula in the scope of the inside quantifier is in the scope of the outside

quantifier.

3.2.4 (�w){Pw e (�x)(�y)[(Px C Py) e (�z)-(Qz w Rz)]}

There are four quantifiers in 3.2.4.  Their scopes are as follows.

Quantifier Scope

(�w) {Pw e (�x)(�y)[(Px C Py) e (�z)-(Qz w Rz)]}

(�x) (�y)[(Px C Py) e (�z)-(Qz w Rz)]

(�y) [(Px C Py) e (�z)-(Qz w Rz)]

(�z) -(Qz w Rz)

Scope is important for quantifiers because it affects which variables are bound by the quantifier. 

When we construct derivations in predicate logic, we will often remove quantifiers from formulas.  When

we do so, the variables bound by those quantifiers will be affected.  Similarly, we will add quantifiers to

front of formulas.  When we do so, we bind variables that are in their scopes.

Quantifiers bind every instance of their variable in their scope.  A bound variable is attached to

the quantifier which binds it.  In 3.2.1, the ‘x’ in ‘Qx’ is bound, as is the ‘x’ in ‘Px’.  In 3.2.2, the ‘x’ in

‘Qx’ is not bound, though the ‘x’ in ‘Px’ is bound.  An unbound variable is called a free variable.  
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Wffs that contain at least one unbound variable are called open sentences.  3.2.5-3.2.8 are all

open sentences.

3.2.5 Ax

3.2.6 (�x)Px w Qx

3.2.7 (�x)(Px w Qy)

3.2.8 (�x)(Px e Qx) e Rz

3.2.6, 3.2.7, and 3.2.8 contain both bound and free variables.  In 3.2.6, ‘Qx’ is not in the scope of

the quantifier, so is unbound.  In 3.2.7, ‘Qy’ is in the scope of the quantifier, but ‘y’ is not the quantifier

variable, so is unbound.  In 3.2.8, ‘Rz’ is neither in the scope of the quantifier, nor does it contain the

quantifier variable.

If a wff has no free variables, it is a closed sentence, and expresses a proposition.  3.2.9 and

3.2.10 are closed sentences.  Translations from English into M  should ordinarily yield closed sentences.

3.2.9 (�y)[(Py C Qy) e (Ra w Sa)]

3.2.10 (�x)(Px C Qx) w (�y)(Ay e By)

Formation rules for wffs of M

1. A predicate (capital letter) followed by a singular term (lower-case letter) is a wff.

2. For any variable â, if á is a wff that does not contain either ‘(�â)’ or ‘(�â)’, then ‘(�â)á’ and

‘(�â)á’ are wffs.

3. If á is a wff, so is -á.

4. If á and â are wffs, then so are:

(á C â)

(á w â)

(á e â)

(á / â)

5. These are the only ways to make wffs.

A few observations concerning the formation rules are in order.  First, by convention, we drop the

outermost brackets which are required by Rule 4.  Still, those brackets are implicit and replaced if we

augment the formula.

A wff constructed using only Rule 1 is called an atomic formula.  3.2.11 - 3.2.13 are atomic

formulas.  Notice that an atomic formula can be closed (as in 3.2.11 and 3.2.12) or open (as in 3.2.13).

3.2.11 Pa

3.2.12 Qt

3.2.13 Ax
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A wff that is part of another wff is called a subformula.  The proposition 3.2.14 has all of the

formulas in the list 3.2.15 as subformulas.

3.2.14 (Pa C Qb) e (�x)Rx

3.2.15 Pa

Qb

Rx

(�x)Rx

Pa C Qb

Quantifiers, like connectives, are called operators.  Atomic formulas lack operators.  The last

operator added according to the formation rules is called the main operator.

Lastly on the formation rules, Rule 2 contains a clause used to prevent overlapping quantifiers. 

This clause prevents us from constructing propositions like the ill-formed 3.2.16.

3.2.16 (�x)[Px C (�x)(Qx e Rx)]

The terms ‘Qx’ and ‘Rx’ contain variables that appear to be bound by both the leading existential

quantifier and the universal quantifier inside the proposition.  In the first few sections of Chapter 3, we

won’t normally be tempted to construct such sentences.  But after we introduce relational predicates, we

will have to be very careful to avoid such overlapping.

We are using only a small, finite stock of singular terms and quantifiers.  It is customary to use a

larger stock, in fact an infinite stock.  To generate an indefinite number ofsingular terms and quantifiers,

we could use the indexing functions of subscripts and superscripts.  We introduce arabic numberals, say,

into the language.  Then, we index each constant and variable:

1 2 3a , a , a ...

1 2 3x , x , x ...

We can create an indefinite number of quantifiers by using the indexed variables.  More austere

languages avoid introducing numbers, and just use prime symbols.

a', a'', a''', a''''...

x', x'', x''', x''''....

Both of these techniques quickly become uinwieldy.  Since we are only going to need a few

variables and constants, we can use a cleaner, if more limited, syntax, remembering that there is a

technique to extend our stock if we were to need it.

Lastly, the language of M  may appear to be arbitrarily restrictive.  When translating into PL, I

urged that we should reveal as much logical structure as we can.  F will reveal more logical structure than

M .  Let’s take a short moment to see how.

3.2.17 Andrés loves Beatriz
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Using M , we read 3.2.17 as predicating a property (loving Beatriz) of an individual (Andrés). 

We regiment it as 3.2.18. 

3.2.18 La

In contrast, if we want to use ‘L’ to stand for the more-general relation of one thing loving a

second, it will have to take two objects: the lover and the lovee.  Thus, we could, in F, introduce a

relational predicate, ‘Lxy’, which stands for ‘x loves y’, yielding 3.2.19.

3.2.19 Lab

Relational predicates will allow us greater generality in our translation, just as translating

negative statements using tildes did.  We look to reveal as much logical structure as we can.  But,

relational predicates will come later, as an extension of M .  We will extend our logical language in other

ways too, including a specific predicate for identity, and adding functors and second-order quantifiers.

We start with M , rather than the more-general F, for two reasons.  First, there are metalogical

differences between M  and F.  M  is decidable, which means that there is a decision procedure, an

algorithm, for determining whether or not an inference or theorem is logically valid.  F is undecidable,

which means that determining whether an inference or theorem is valid may require ingenuity.

Second, starting with the language M , since it is simpler than F, will allow you to become

comfortable with the methods of translation and inference before reaching the complications of full, first-

order logic.

Exercises 3.2.  For each of the following wffs of M , answer each of the following questions:

A. For each quantifier in the sentence, which subformulas are in its scope?  (List them all.)

B. For each quantifier in the sentence, which variables are bound by the quantifier?

C. Which variables in the sentence are free?

D. Is the sentence open or closed?

E. What is the main operator of the sentence?

1. (�x)(Px C Qx)

2. (�x)[(Px C Qx) e -Ra]

3. (�x)(Px C Qx) e (�x)[(Px w Qy) w Rx]

4. (�x)Py

5. (�x)Px e (Qx C Ra)

6. -(�x)[Px w (-Qy C Rx)]

7. (�y)(Pa e Qb)

8. (�x)(Ry C Qx) C Pa

9. (�x)(Rx C -Qx) / (�x)(Px e Qa)

10. (Pa w Qb) e Rc

11. (�x)(Px w Qx) e (�y)(-Qy e -Py)

12. (�x){[(Px w Rx) C Qy] e (�y)[(Rx e Qy) C

Pb]}

13.  -(�x)[(Px / Rx) e Qa]

14. -(�y)(Qx w Px)

15. (�x){(Px C Qy) e (�y)[(Ry e Sy) C Tx]}
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§3.3: Derivations in M

We will use a single deductive system with M .  All of the eighteen rules we used with PL

continue to hold.  In addition, there are four new rules governing removing and adding quantifiers which

we will see in this section.  The general structure of many of the derivations we will do in this section is

first to take off quantifiers; second, to use the rules we already saw for PL; and, last, to put quantifiers on. 

In the next section, we will add an additional rule for exchanging the universal and existential quantifiers.

Taking off the universal quantifier

Recall the valid argument 3.1.1, which we can now fully regiment.

3.1.1 All philosophers are happy. (�x)(Px e Hx)

Emily is a philosopher. Pe

So, Emily is happy. He

We need a rule that will generate the conclusion out of the premises.  We need to remove the

quantifier in such a way as to make the conclusion follow as a simple matter of modus ponens.

Rule #1: Universal Instantiation (UI)

(�á)öá

   öâ for any variable á, any formula ö , and any singular term â

To use UI, we remove the leading universal quantifier.  Then, we replace all occurrences of

variables bound by that quantifier with either a variable (v, w, x, y, z) or a constant (a, b, c,...u).  We can

use UI only when the main operator of a formula is a quantifier.  In other words, UI, like the rules of

inference in Chapter 2, may be used only on whole lines.

UI is also governed by a binding rule.  When you use instantiate or generalize, you must change

all the bound variables in the same way.  Thus, 3.3.1 can be instantiated as any formula in the list 3.3.2

3.3.1 (�x)[Sx w (Pa C Tx)]

3.3.2 Sa w (Pa C Ta)

Sb w (Pa C Tb)

Sx w (Pa C Tx)

Sy w (Pa C Ty)

But 3.3.1 can not be instantiated as 3.3.3 or as 3.3.4.

3.3.3 Sa w (Pa C Tb)

3.3.4 Sx w (Pa C Ta)

Let’s see how we use UI in the derivation of the argument at 3.1.1.

3.3.5 1. (�x)(Px e Hx)

2. Pe / He

3. Pe e He 1, UI

4. He 3, 2, MP

QED
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Putting on the universal quantifier

All of the propositions in 3.3.6 contain quantifiers as main operators.  To derive the conclusion,

we will remove the quantifiers, make some inferences, and put on a quantifier at the end.

3.3.6 1. Everything happy is content. 1. (�x)(Hx e Cx)

2. No miser is content. 2. (�x)(Mx e -Cx) 

So, no miser is happy. / (�x)(Mx e -Hx)

We thus need a rule allowing us to put a quantifier on the front of a formula.  We might be

tempted to introduce a rule such as 3.3.7.

3.3.7 Bad Generalization Rule

    öa    

(�x)öx

To see why 3.3.7 is a bad generalization rule, consider the instance of it at 3.3.8.

3.3.8 1. Pa

2. (�x)Px

Now, interpret ‘P’ as ‘is portly’ and ‘a’ as ‘Adam’.  3.3.7 thus licenses the conclusion that

everything is portly from just one instance.  Such an inference is called the Fallacy of Hasty

Generalization.  To avoid such a fallacy, we never universally generalize (or quantify) over a constant.  In

other words, we may not replace a constant with a variable bound by a universal quantifier.  This

restriction keeps us from ever universally quantifying over individual cases.

While we may not quantify over constants, we may quantify over variables.  Indeed, the point of

introducing variables, and distinguishing them from constants, is precisely to identify when a universal

generalization is permitted.  Variables, except in limited circumstances we will introduce in §3.5, retain a

universal character, even when they are unbound.  Generalizing over them (i.e. binding them with a

universal quantifier) does not commit a fallacy because the variable can stand for anything and

everything.

Rule #2: Universal Generalization (UG) 

  öâ

(�á)öá for any variable â, any formula ö , and any variable á

Again, UG works only on whole lines.  We place the universal quantifier in front of a whole

statement so that the scope of the quantifier is the entire rest of the proposition.  Further, we replace all

occurrences of the variable over which we are quantifying with the variable in the quantifier: we bind all

instances of the variable.  You must replace all occurrences!
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3.3.9 contains a proper use of UG.  Notice that I changed all the ‘x’s to ‘y’s when instantiating at

lines 3 and 4.  I could have kept the variables as ‘x’s, or used any other variable.  But, if I had instantiated

to constants, which would have been permissible according to UI, I could not have generalized to a

universal quantifier at line 7.

3.3.9 1. (�x)(Hx e Cx)

2. (�x)(Mx e -Cx) / (�x)(Mx e -Hx)

3. Hy e Cy 1, UI

4. My e -Cy 2, UI

5. -Cy e -Hy 3, Cont

6. My e -Hy 4, 5, HS

7. (�x)(Mx e -Hx) 6, UG

QED

Putting on the existential quantifier

We now have rules for removing and putting on the universal quantifier.  There are parallel rules

for the existential quantifer.  We will use the rule for existentially generalizing to facilitate the inference

3.3.10.

3.3.10 Oscar is a Costa Rican. Co

So there are Costa Ricans. (�x)Cx

Rule #3: Existential Generalization (EG)

  öâ

(�á)öá for any singular term â, any formula ö , and for any variable á

To use EG, place an existential quantifier in front of any proposition and change all occurrences

of the singular term (constant or variable) over which you are quantifying with the quantifier letter.

Unlike UG, which results in a strong, universal claim, EG is a weak inference and so can be made from

any claim, whether concerning constants or variables.  Again, the resulting formula will have the

quantifer you just added as the main operator.

The derivation of the argument at 3.3.10 is trivial.

3.3.11 1. Co / (�x)Cx

2. (�x)Cx 1, EG

QED

Taking off the existential quantifier

Our fourth rule for managing quantifiers allows us to remove an existential quantifier.  As with

UG, there will be a restriction.  

3.3.12 All New Yorkers are Americans. 1. (�x)(Nx e Ax)

Some New Yorkers are bald. 2. (�x)(Nx C Bx) 

So, some Americans are bald. / (�x)(Ax C Bx)
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In order to derive 3.3.12, we have to take off the ‘�x’ in the second premise.  The existential

quantifier only commits us to the existence of one thing.  So, when we take it off, we have to put on a

constant.  Moreover, we can not have said anything earlier in the derivation about that constant; it has to

be a new thing.

Rule #4: Existential Instantiation (EI)

(�á)öá

   öâ for any variable á, any formula ö , and any new constant â

As with all four of the quantifier management rules, EI must be used only on whole lines.  We

remove the leading existential quantifier and replace all occurrences which were bound by the quantifier

with the same, new constant.  A new constant is one that does not appear in either the premises or the

desired conclusion.  An existentially-quantified sentence only commits you to the existence of some thing

that has the property ascribed to it in the formula, and not to any particular thing which might have other

properties inconsistent with those in the formula.

To see why a new constant is required, consider what would happen without that restriction, in

the fallacious inference at 3.3.13.

3.3.13 1. (�x)(Ax C Cx)

2. (�x)(Ax C Dx)

3. Aa C Ca 1, EI

4. Aa C Da 2, EI: but wrong!

5. Ca 3, Com, Simp

6. Da 4, Com, Simp

7. Ca C Da 5, 6, Conj

8. (�x)(Cx C Dx) 7, EG

Uh-oh!

To see that 3.3.13 contains a fallacious inference, let’s interpret ‘Ax’ as ‘x is an animal’; ‘Cx’ as

‘x is a cat’ and ‘Dx’ as ‘x is a dog’.  The first two premises are perfectly reasonable: there are cats and

there are dogs.  The conclusion indicates the existence of a cat-dog.  Whatever the advances in biogenetic

engineering may be, we can not infer the existence of a cat-dog from the existence of cats and dogs.

Since EI contains a restriction whereas UI does not, in the common case in which you have to

instantiate both universally-quantified and existentially-quantified propositions, EI before you UI.

3.3.14 contains an acceptable use of EI.

3.3.14 1. (�x)(Nx e Ax)

2. (�x)(Nx C Bx) / (�x)(Ax C Bx)

3. Na C Ba 2, EI

4. Na e Aa 1, UI

5. Na 3, Simp

6. Aa 4, 5, MP

7. Ba 3, Com, Simp

8. Aa C Ba 6, 7, Conj

9. (�x)(Ax C Bx) 8, EG

QED
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I mentioned, for each of the rules, that you may not instantiate a line on which the quantifier is

not the main operator.  As an example, note that in 3.3.15, line 2 can not be instantiated.

3.3.15 1. (�x)(Dx C Ex)

2. (�x)Dx e Fa / (�x)Fx

3. Dx C Ex 1, UI

4. Dx 3, Simp

5. (�x)Dx 4, UG

6. Fa 2, 5, MP

7. (�x)Fx 6, EG

QED

Similarly, we can not take off either quantifier in line 1 of 3.3.16.

3.3.16 1. (�x)(Jx w Kx) e (�y)Ly

2. (�x)(Jx w Lx)

3. (�x)(-Lx w Kx) / (�x)Lx

4. Jx w Lx 2, UI

5. -Jx e Lx 4, DN, Impl

6. -Lx w Kx 3, UI

7. Lx e Kx 6, Impl

8. -Jx e Kx 5, 7, HS

9. Jx w Kx 8, Impl, DN

10. (�x)(Jx w Kx) 9, UG

11. (�y)Ly 1, 10, MP

12. La 11, EI

13. (�x)Lx 12, EG

QED

You may instantiate the same quantifier twice, including the existential quantifier.  When the

quantifier is universal, as in 3.3.17, there are no restrictions on instantiating it.

3.3.17 1. (�x)(Mx e Nx)

2. (�x)(Nx e Ox)

3. Ma C  Mb / Na C Ob

4. Ma e Na 1, UI

5. Ma 3, Simp

6. Na 4, 5, MP

7. Mb e Nb 1, UI

8. Mb 3, Com, Simp

9. Nb 7, 8, MP

10. Nb e Ob 2, UI

11. Ob 10, 9, MP

12. Na C Ob 6, 11, Conj

QED



Marcus, What Follows, page 123

When the quantifier is existential, as in 3.3.18, the second instantiation must go to a new constant. 

It may seem odd that we can instantiate an existential quantifier twice when the use of an existential

quantifier only commits you to a single thing having a given property.  But, that odd feeling should be

removed by remembering that objects may have more than one name.

3.3.18 1. (�x)(Px C Qx)

2. (�x)(Px e Rx) / (�x)Rx C (�x)Qx

3. Pa C Qa 1, EI

4. Pa e Ra 2, UI

5. Pa 3, Simp

6. Ra 4, 5, MP

7. (�x)Rx 6, EG

8. Pb C Qb 1, EI

9. Qb C Pb 8, Com

10. Qb 9, Simp

11. (�x)Qx 10, EG

12. (�x)Rx C (�x)Qx 7, 11, Conj

QED

Exercises 3.3.  Derive the conclusions of the following arguments.

1. 1. (�y)(Ny C Oy) / Na C Ob

2. 1. (�x)Hx w Ja

2. (�x)[(-Jx C Ix) w (-Jx C Kx)] / (�x)Hx

3. 1. (�x)(Px C -Qx) / (�x)(Qx e Rx)

4. 1. (�x)(Tx C Ux) e (�x)Vx

2. (�x)[(Wx C Tx) C Ux] / (�x)Vx

5. 1. (�x)(Ax e Bx)

2. (�x)(Cx e -Bx)

3. Aa / -Ca

6. 1. (�x)(Ax e Bx)

2. (�x)(Cx e -Bx) / (�x)(Cx e -Ax)

7. 1. (�x)(Jx C Kx) / (�x)Jx C (�x)Kx

8. 1. (�x)(Dx C -Ex)

2. (�x)(Ex w Fx) / (�x)Fx

9. 1. (�x)(Ax C -Bx)

2. (�x)(Cx e Bx) / (�x)(Ax C -Cx)

10. 1. (�x)(Px C Qx)

2. (�x)(Rx C Sx) / Pa C Rb
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11. 1. (�x)(Fx C Hx) / Gb

2. Gb / Fa

12. 1. (�x)(Fx / Gx) / (�x)(Fx e Gx) C (�x)(Gx e Fx)

13. 1. (�x)Ax e Ba

2. (�x)-(Ax e Cx) / (�x)Bx

14. 1. (�x)Lx / Nb

2. (�x)[(Lx C Mx) C Ox] / (�x)Nx

15. 1. (�x)(Fx w Hx) e (�x)Ex

2. (�x)[Fx w (Gx C Hx)] / (�y)Ey

16. 1. (�x)(Ix e Kx)

2. (�x)(Jx e Lx)

3. (�x)(Jx w Ix) / (�x)(Kx w Lx)

17. 1. (�x)[Gx e (Hx w Ix)]

2. (�x)(Gx C -Ix) / (�x)(Gx C Hx)

18. 1. (�x)(Ax / Cx)

2. (�x)(Bx e Cx)

3. Ba / (�x)Ax

19 1. (�x)(Ax C Bx)

2. (�x)(Ax e Cx)

3. (�x)(Bx e Dx) / (�x)(Cx C Dx)

20. 1. (�x)(Mx e Nx)

2. (�x)(Ox e Px)

3. (�x)[Mx w (Ox C Qx)] / (�x)(Nx w Px)

21.  1. (�x)(Ax C Bx) w (-Ca C Da)

2. (�x)(Dx e Cx) / (�x)(Ax C Bx)

22. 1. (�x)(Fx C Gx)

2. (�x)(-Gx w Ex) / (�x)(Fx C Ex)

23. 1. (�x)(Mx e Nx)

2. (�x)(-Nx C Ox)

3. (�x)-Mx e (�x)-Ox / (�x)Ox C (�x)-Ox

24. 1. (�x)(Dx e Ex)

2. (�x)(Ex e -Gx)

3. (�x)Gx / (�x)-Dx
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25. 1. (�x)(Mx C Ox) e (�x)Nx

2. (�x)(Px C Mx)

3. (�x)(-Px w Ox) / (�x)Nx

26. 1. (�x)(Dx C Ex)

2. (�x)(-Fx w Gx) / (�x)[(Dx / Ex) C (Fx e Gx)]

27. 1. (�x)[Tx w (Ux C Vx)]

2. (�x)(Wx e -Tx) / (�x)(Wx e Ux)

28. 1. (�x)(Lx / Nx)

2. (�x)(Nx e Mx)

3. (�x)-(Mx w Ox) / (�x)-Lx

29. 1. (�x)[Hx C (Ix w Jx)]

2. (�x)(Kx e -Ix)

3. (�x)(Hx e Kx) / (�x)Jx

30. 1. (�x)(Dx C Fx)

2. (�x)(Gx e Ex)

3. (�x)-(Hx w Ex) / (�x)Fx C (�x)-Gx

31. 1. (�x)(Rx / Tx)

2. (�x)(Tx C -Sx)

3. (�x) [Sx w (Rx e Ux)] / (�x)Ux

32. 1. (�x)Ix e (�x)Kx

2. (�x)[Jx C (Ix w Lx)]

3. (�x)(Jx e -Lx) / (�x)Kx

33. 1. (�x)(Px w Qx) / Rc

2. (�x)-(Sx w -Qx) / (�y)Ry

34. 1. (�x)Qx / (�x)Sx

2. (�x)(Rx w Sx)

3. (�x)-(Rx w Qx) / Qb

35. 1. (�x)Ax e (�x)Cx

2. (�x)(-Bx e Dx)

3. (�x)(Bx e Ax)

4. (�x)-(Dx w -Cx) / (�x)Cx

36. 1. (�x)(Kx e Lx)

2. (�x)(Lx e Mx)

3. Ka C Kb / (�x)Lx C (�y)My

37. 1. (�x)(Ox e Qx)

2. (�x)(Ox w Px)

3. (�x)(Nx C -Qx) / (�x)(Nx C Px)
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38. 1. (�x)(Px e Qx)

2. (�x)-(Rx w -Px) / (�x)(Qx C-Rx)

39. 1. (�x)[Ax e (Bx w Cx)]

2. (�x)-(Bx w -Ax) / (�x)Cx

40. 1. (�x)[(Sx w Tx) C Ux]

2. (�x)(Ux e -Sx) / (�x)-Sx C (�y)(Uy C Ty)

41. 1. (�x)(Sx w Tx)

2. (�x)-(Ux e Sx) / (�x)Tx C (�y)Uy

42. 1. (�x)(Hx e -Jx)

2. (�x)(Ix e Jx)

3. Ha C Ib / -(Ia w Hb)

43. 1. (�x)Ax

2. (�x)(Ax e Bx)

3. (�x)-(Ex e Bx) / (�x)Cx

44. 1. (�x)(-Tx C Ux) / (�x)Wx

2. (�x)(Tx e Vx)

3. (�x)(Ux C -Vx) / (�x)Wx

45. 1. (�x)(Jx / Kx) e (�x)(Ix C Lx)

2. (�x)[(Ix C Jx) e Kx]

3. (�x)-(Ix e Kx) / (�y)Ly

46. 1. (�x)Kx e (�x)(Lx e Mx)

2. (�x)-(Kx e -Lx)

3. (�x)-Mx / (�x)-Lx

47. 1. (�x)[Ix w (Hx w Jx)]

2. (�x)-(-Ix e Jx)

3. (�x)-(Hx C Kx) / (�x)-Kx
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§3.4: Quantifier Exchange

The rules for removing and replacing quantifiers will allow us to make many inferences in

predicate logic.  But, some inferences need more machinery.  Consider the argument at 3.4.1 and its

natural regimentation.

3.4.1 All successful football players are hard-working.  But, not all football players are

hard working.  So, not everything is successful.

1. (�x)[(Fx C Sx) e Hx]

2. -(�x)(Fx e Hx) / -(�x)Sx

W need to remove the quantifer in the second premise of 3.4.1 to derive the conclusion.  But, the

quantifier is not the main operator of that proposition and so we can not instantiate the premise as it

stands.  Further, we will want to put a quantifier on some proposition near the end of the derivation.  But,

it’s unclear how we are going to sneak the quantifier in between the tilde and the ‘Sx’ in the conclusion. 

We need some rules for managing the interactions between quantifiers and negations.  As we will see in

this section, every proposition which has a negation in front of a quantifier is equivalent to another

proposition in which a quantifier is the main operator.

We use two different quantifiers in predicate logic, the existential and the universal.  These

quantifiers are inter-definable.  Indeed, some systems of logic take only one quantifer as fundamental and

introduce the other by definition.  We can see the equivalence between the existential and universal

quantifiers in natural language by considering the following four pairs.

3.4.2 Everything is made of atoms.

3.4.2' It’s not the case that something is not made of atoms.

3.4.3 Something is made of atoms.

3.4.3' It’s wrong to say that nothing is made of atoms.

3.4.4 Nothing is made of atoms.

3.4.4' It’s false that something is made of atoms.

3.4.5 At least one thing isn’t made of atoms.

3.4.5' Not everything is made of atoms.

Noting the equivalence of each pair, we can show their equivalence in the predicate logic

regimentations.

(�x)Ax is equivalent to -(�x)-Ax

(�x)Ax is equivalent to -(�x)-Ax

(�x)-Ax is equivalent to -(�x)Ax

(�x)-Ax is equivalent to -(�x)Ax

We can thus introduce the rule of Quantifier Exchange (QE).  You may replace any expression

of one of the above forms with a statement of its logically equivalent form.  Like rules of equivalence, QE

is based on logical equivalence, rather than validity, and thus may be used on part of a line.

QE (�x)öx  W  -(�x)-öx

(�x)öx   W  -(�x)-öx

(�x)-öx  W  -(�x)öx

(�x)-öx  W  -(�x)öx
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QE appears as four rules.  But, we call really consider them as one, more-general rule.  There are

three spaces around each quantifier: 

1. Directly before the quantifier  

2. The quantifier itself

3. Directly following the quantifier

QE says that to change a quantifier, you change each of the three spaces.

Add or remove a tilde directly before the quantifier.

Switch quantifiers: existential to universal or vice versa.

Add or remove a tilde directly after the quantifier.

Some transformations permitted by QE 

Understanding the relation between the existential and universal quantifiers facilitates some

natural transformations, like between 3.4.5 and 3.4.6, as the following derivation shows.

3.4.6 It’s not the case that every P is Q -(�x)(Px e Qx)

3.4.7 Something is P and not Q (�x)(Px C -Qx)

1. -(�x)(Px e Qx) Premise

2. (�x)-(Px e Qx) 1, QE

3. (�x)-(-Px w Qx) 2, Impl

4. (�x)(Px C -Qx) 3, DM, DN

Similarly, 3.4.8, 3.4.9, and 3.4.10 are all equivalent.

3.4.8 It’s not the case that something is both P and Q -(�x)(Px C Qx)

3.4.9 Everything that’s P is not Q (�x)(Px e -Qx)

3.4.10 Everything that’s Q is not P (�x)(Qx e -Px)

1. -(�x)(Px C Qx) Premise

2. (�x)-(Px C Qx) 1, QE

3. (�x)(-Px w -Qx) 2, DM

4. (�x)(Px e -Qx) 3, Impl

5. (�x)(Qx e -Px) 4, Cont, DN

3.4.11 is a sample derivation using QE. 

3.4.11 1. (�x)Lx e (�y)My

2. (�y)-My / -La

3. -(�y)My 2, QE

4. -(�x)Lx 1, 3, MT

5. (�x)-Lx 4, QE

6. -La 5, UI

QED
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Note that in 3.4.11 you can not existentially instantiate line 4.  You may only use EI when it is

the main operator on a line.  On line 4, the main operator is the tilde.  Thus, you must use QE before

instantiating.

Let’s return to 3.4.1.  It does not appear, at first glance, to have an existential premise.  But since

the main operator at line 2 is a tilde in front of a quantifier, in order to instantiate, we first must use QE,

yielding an existential sentence.  Then, we EI (line 6) before we UI (line 7).

3.4.12 1. (�x)[(Fx C Sx) e Hx]

2. -(�x)(Fx e Hx) / -(�x)Sx

3. (�x)-(Fx e Hx) 2, QE

4. (�x)-(-Fx w Hx) 3, Impl

5. (�x)(Fx C -Hx) 4, DM, DN

6. Fa C -Ha 5, EI

7. (Fa C Sa) e Ha 1, UI

8. -Ha 6, Com, Simp

9. -(Fa C Sa) 7, 8, MT

10. -Fa w -Sa 9, DM

11. Fa 6, Simp

12. -Sa 10, 11, DN, DS

13. (�x)-Sa 12, EG

14. -(�x)Sx 13, QE

QED

Most of the proofs we have been doing require some instantiation and/or generalization.  Now

that we have QE available, we can derive arguments which require no removal or replacement of

quantifiers, like 3.4.13.

3.4.13 1. (�x)-Dx e (�x)Ex

2. (�x)-Ex /(�x)Dx

3. -(�x)Ex 2, QE

4. -(�x)-Dx 1, 3, MT

5. (�x)Dx 4, QE

QED
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Exercises 3.4.  Derive the conclusions of each of the following arguments.

1. 1. (�x)Ax e (�x)Bx

2. (�x)-Bx / -Ab

2. 1. (�x)[Qx C (Rx C -Sx)] / -(�y)Sy

3. 1. (�x)(Jx C Kx) w -(�x)Lx

2. -Ja / (�x)-Lx

4. 1. (�x)-Ix e (�x)(Jx w Kx)

2. -(�x)Ix C -Jb / Kb

5. 1. (�x)Cx w (�x)Dx

2. (�x)-(Cx w Ex) / (�x)Dx

6. 1. -(�x)(Rx w Sx) w (�x)(Tx e -Rx)

2. Ra / -(�x)Tx

7. 1. (�x)-Fx w (�x)(Gx C Hx)

2. (�x)[(Fx C Gx) w (Fx C Hx)] / (�y)(Gy C Hy)

8. 1. -(�x)(Qx e Rx)

2. (�x)(-Rx e Tx) / -(�x)-Tx

9. 1. (�x)[Lx w (Mx C -Nx)]

2. -(�x)Lx / -(�x)(Lx w Nx)

10. 1. (�x)[(Tx C Ux) e Vx]

2. -(�x)-Tx / -(�x)(Ux C -Vx)

11. 1. (�x)(Ax w Bx)

2. (�x)(Ax e Dx)

3. -(�x)(Bx C -Cx) / (�y)(Dy w Cy)

12. 1. -(�x)[Kx e (Lx e Mx)]

2. (�x)[(Nx C Ox) / Mx] /-(�x)(Nx C Ox)

13. 1. -(�x)(Ox / Px)

2. Pa /-(�x)Ox

14. 1. -(�x)[Ex C (Fx w Gx)]

2. (�x)[Hx e (Ex C Gx)]

3. (�x)[-Hx e (Ix w Jx)] / (�x)(-Ix e Jx)

15. 1. -(�x)[Fx C (Gx C Hx)]

2. -(�x)(Ix C -Fx) / (�x)[Ix e (-Gx w -Hx)]
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16. 1. -(�x)[(Jx C Kx) C Lx]

2. (�x)(Mx e Jx)

3. (�x)(-Nx C Mx) / -(�x)(Kx C Lx)

17. 1. (�x)[(Ax w Cx) e Bx]

2. -(�x)(Bx w Ex)

3. (�x)(Dx e Ex) e (�x)(Ax w Cx) / (�y)Dy

18. 1. (�x)(Nx w -Ox)

2. -(�x)(Px C Qx) C -(�x)(Nx w -Qx) / -[(�x)Px w (�x)Ox]

19. 1. (�x)(Mx C -Nx) e (�x)(Ox w Px)

2. -(�x)(-Nx e Ox)

3. -(�x)Px / -(�y)Ny

20. 1. (�x)[Ax C (Bx w Cx)] e (�x)Dx

2. -(�x)(Ax e Dx) / -(�x)Cx

21. 1. (�x)(Ex C Fx) w -(�x)[Gx e (Hx e Ix)]

2. -(�x)(Jx e Ex) / -(�y) Iy

22. 1.-(�x)(Jx C -Kx)

2. -(�x)[Kx C (-Jx w -Lx)] / (�x)(Jx / Kx)

23. 1. -[(�x)(Ax w Bx) C (�x)(Cx e Dx)]

2. -(�x)(-Ax w Ex) / (�x)Cx

24. 1. (�x)(Fx e Hx) w -(�x)(Gx / Ix)

2. (�x)[Fx C (-Hx C Ix)] /  -(�x)Gx

25. 1. -(�x)[Px C (Qx C Rx)]

2. -(�x)[-Rx w (Sx CTx)]

3. (�x)(Px C Qx) w (�x)(Tx e Rx) / -(�x)(Tx C -Rx)
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§3.5: Conditional and Indirect Proof in M

The conditional and indirect methods of proof work just as well in M  as they did in PL, with one

small restriction.  The restriction arises from considering the unrestricted and fallacious derivation 3.5.1.

3.5.1 1. (�x)Rx e (�x)Bx Premise

*2. Rx ACP

*3. (�x)Rx 2, UG: but wrong!

*4. (�x)Bx 1, 3, MP

*5. Bx 4, UI

6. Rx e Bx 2-5, CP

7. (�x)(Rx e Bx) 6, UG

Uh-oh.

Allowing line 7 to follow from the premise at line 1 would be wrong.  We can show that the

inference is invalid by interpreting the predicates.  Let’s take ‘Rx’ to stand for ‘x is red’ and ‘Bx’ to stand

for ‘x is blue’.  3.5.1 would allow the inference of ‘Everything red is blue’ (the conclusion) from ‘If

everything is red, then everything is blue’ (the premise).  But that premise can be true while the

conclusion is false.  Indeed, since it is not the case that everything is red, the first premise is vacuously

true; it is a conditional with a false antecedent.  But, the conclusion is clearly false; it is not the case that

all red things are blue.  So, the derivation should be invalid.  We must restrict conditional proof.

The problem with 3.5.1 can be seen at step 3.  The assumption for conditional proof at line 2 just

means that a random thing has the property denoted by ‘R’, not that everything has that property.  While

variables retain their universal character in a proof, when they are used within an assumption (for CP or

IP), they lose that universal character.  It is as if we are saying, “Imagine that some (particular) thing has

the property ascribed in the assumption.”  If it follows that the object in the assumption also has other

properties, we may universally generalize after we’ve discharged, as in line 7.  For, we have not made any

specific claims about the thing outside of the assumption.

Using conditional proof in this way should be familiar to mathematics students.  Often in

mathematics we will show that some property holds of a particular example.  Then, we claim, without

loss of generality, that since our example was chosen arbitrarily, our property holds universally.  Within

the assumption, we have a particular example and we treat it existentially.  Once we are done with that

portion of the proof, we can treat our object universally, without loss of generality.

Consider an indirect proof of some universally quantified formula, ‘(�x)á’.  We assume its

opposite: ‘-(�x)á’.  We can then change that assumption, using QE, to ‘(�x)-á’.  In other words, we start

with an existential assertion: let’s say that something is not á.  Another way to do such a proof would be

to assume -á immediately.  We could do this by making the free variables in á constants or variables. 

Either way, they have to act as constants within the assumption.

To summarize, we may not generalize on a variable within the scope of an assumption in which

that variable is free.  This restriction holds on both CP and IP, though it is rare to use IP with a free

variable in the first line.

Restriction on CP and IP

Never use UG within an assumption on a variable that is free in the first line of the

assumption.
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There are two typical uses of CP in predicate logic.  One involves assuming the antecedent of the

conditional we ordinarily find inside a universally-quantified formula, as in 3.5.2.

3.5.2 1. (�x)[Ax e (Bx w Dx)]

2.  (�x)-Bx / (�x)(Ax e Dx)

*3. Ay ACP

 *4. Ay e (By w Dy) 1, UI

*5. By w Dy 4, 3, MP

*6. -By 2, UI

*7. Dy 5, 6, DS

8. Ay e Dy 3-7, CP

9. (�x)(Ax e Dx) 8, UG

QED

In 3.5.2, at line 3, we pick a random object that has property A.  From lines 3 to 7, we show that

given any object, if it has A, then it has D; we make that claim at step 8.  Then, at line 9, since we are no

longer within the scope of the assumption, we may use UG.

To prove statements of the form (�x)(áx e âx), we use the method sketched at 3.5.3.

3.5.3 Assume áx

Derive âx

Discharge (áx e âx)

UG

The other typical use of CP within predicate logic is even more obvious.  When you have a

proposition whose main operator is a e, you assume the whole antecedent to prove the whole consequent,

as in 3.5.4.

3.5.4 1. (�x)[Px e (Qx C Rx)]

2. (�x)(Rx e Sx) / (�x)Px e (�x)Sx

*3. (�x)Px ACP

*4. Pa 3, EI

*5. Pa e (Qa C Ra) 1, UI

*6. Qa C Ra 5, 4, MP

*7. Ra 6, Com, Simp

*8. Ra e Sa 2, UI

*9. Sa 8, 7, MP

*10. (�x) Sx 9, EG

11. (�x)Px e (�x)Sx 3-10, CP

QED

Thus, conditional proof can work just as it did in PL.  Indirect Proof also works the same way it

did in propositional logic, as you can see in 3.5.5.  Remember, after you make your assumption, you’re

looking for any contradiction.  A contradiction may be an atomic formula and its negation or it may be a

more complex formula and its negation.  It can contain quantifiers, or not.
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3.5.5 1. (�x)[(Ax w Bx) e Ex]

2. (�x)[(Ex w Dx) e -Ax] / (�x)-Ax

*3. -(�x)-Ax AIP

*4. (�x)Ax 3, QE

*5. Aa 4, EI

*6. (Ea w Da) e -Aa 2, UI

*7. -(Ea w Da) 6, 5, DN, MT

*8. -Ea C -Da 7, DM

*9. -Ea 8, Simp

*10. (Aa w Ba) e Ea 1, UI

*11. -(Aa w Ba) 10, 9, MT

*12. -Aa C -Ba 11, DM

*13. -Aa 12, Simp

*14. Aa C -Aa 5, 13, Conj

15. (�x)-Ax 3-13, IP, DN

QED

With CP, sometimes you assume only part of a line, and then generalize outside the assumption. 

With IP, you almost always assume the negation of the whole conclusion, as in line 3 of 3.5.5.
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Exercises 3.5.  Derive the conclusions of the following arguments.

1. 1. (�x)(Dx w Ex)

2. (�x)(Fx e -Ex) / (�x)(-Dx e -Fx)

2. 1. (�x)(Ax e Bx)

2. (�x)-(Bx C -Cx) / (�x)(Ax e Cx)

3. 1. (�x)(Gx e Hx)

2. -(�x)(Ix C -Gx)

3. (�x)(-Hx e Ix) / (�x)Hx

4. 1. (�x)[Ax e (Bx e Cx)]

2. -(�x)(Bx e Dx) / (�x)Ax e (�x)(Cx C -Dx)

5. 1. (�x)(Rx e Ux)

2. -(�x)(Ux C Sx) / (�x)Rx e (�x)-Sx

6. 1. (�x)[Ax e (Dx w Ex)]

2. (�x)[(-Dx e Ex) e (-Cx e Bx)] / (�x)[Ax e (Bx w Cx)]

7. 1. (�x)[-Nx w (Qx C Rx)]

2. (�x)(Px / Qx) / (�x)Nx e (�x)Px

8. 1. (�x)(Px e Qx)

2. -(�x)[(Px C Rx) C Qx]

3. (�x)Rx / -(�x)Px

9. 1. (�x)(Ox e Nx)

2. (�x)(Nx e Px)

3. -(�x)(Px w Qx) / (�x)-Ox

10. 1. (�x)[(Fx w Gx) e Ix]

2. (�x)[(Ix C Ex) e Gx] / (�x)[Ex e (Fx e Gx)]

11. 1. (�x)[Sx e (-Tx w -Rx)]

2. (�x)(Ux e Sx) / (�x)(Rx C Tx) e (�x)(-Sx C -Ux)

12. 1. (�x)(Ex / Hx)

2. (�x)(Hx e -Fx) / (�x)Ex e -(�x)Fx

13. 1. (�x)(Cx e Ax)

2. (�x)-Bx e (�x)Cx / (�x)(Ax w Bx)

14. 1. (�x)[Jx e (-Kx e -Lx)

2. (�x)(Jx C -Kx) / -(�x)Lx

15. 1. (�x)[Jx e (Mx C Lx)]

2. (�x)[(-Kx w Nx) C (-Kx w Lx)] / (�x)[(Jx w Kx) e Lx]
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16. 1. (�x)(Ix e Kx)

2. (�x)(Lx e Jx)

3. -(�x)(-Kx e Jx) / -(�x)[Ix w (Lx C Mx)]

17. 1. (�x)(Px e Ox)

2. (�x)(Ox / Qx) / (�x)(-Px w Qx)

18. 1. (�x)[Fx e (Dx C -Ex)]

2. (�x)(Fx e Hx)

3. (�x)Fx / -(�x)(Dx e Ex) w (�x)[Fx C (Gx C Hx)]

19. 1. (�x)(Sx w Tx)

2. (�x)(Ux e -Vx)

3. (�x)Tx e (�x)Ux / -(�x)(-Sx C Vx)

20. 1. (�x)[Ax e (Cx C Dx)]

2. (�x)(Bx C -Cx) / -(�x)(Ax / Bx)

21. 1. -(�x)[Rx / (Tx C Ux)]

2. (�x){(Tx e -Ux) e [Sx / (Rx w Wx)]} /(�x)[Rx e (Sx w Vx)]

22. 1. (�x)[(Lx C Ix) e -Kx]

2. (�x)[Mx w (Jx C Nx)]

3. (�x)(Kx e -Mx)

4. (�x)(Ix C Kx) / -(�x)(Jx e Lx)

23. 1. (�x)(Ax / Dx)

2. (�x)[(-Bx e Cx) e Dx]

3. (�x)[(Ex e Bx) C (Dx e Cx)] / (�x)[Ax / (Bx w Cx)]

24. 1. (�x)[Fx w (Gx C Hx)]

2. (�x)[-Jx e (-Fx C -Hx)]

3. (�x)(-Gx e -Jx) / (�x)(Fx w Gx)

25. 1. -(�x)[(Kx C Lx) C (Mx / Nx)]

2. (�x){Kx e [Ox w (Px e Qx)]}

3. (�x)[(Lx C Mx) e Px]

4. (�x)[Nx w (Kx C -Qx)] / (�x)[Lx e (Nx w Ox)]
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§3.6: Semantics for Predicate Logic

We have been constructing and using formal theories of logic.  A theory is just a set of sentences,

which we call theorems.  A formal theory is a set of sentences of a formal language.  We identify a theory

by its theorems, the set of sentences provable within that theory.  Some theories are finite, having finitely

many theorems.  Many interesting formal theories are infinite.  The theories we are using based on PL

and M  are infinite since they have infinitely many theorems.

To construct a formal theory, we first specify a language and its syntax: vocabulary and rules for

well-formed formulas.  We have looked carefully at the syntax of both PL and M .  Once we have

specified the wffs of a language, we can use that language in a theory.  The same language can be used in

different theories.

There are different ways to specify the theorems of a theory.  Most obviously, we can list them. 

Listing the theorems of an infinite theory is an arduous task.  Alternatively, we can adopt some axioms

and rules of inference.  For example, we could adopt the axioms of Euclidean geometry or of Newtonian

mechanics.  Such theories are usually placed within a background logical theory.  Their (proper) axioms

are added to the logical axioms.  To construct formal physical theories, we generally add mathematical

axioms as well.  Euclid and Newton were not as careful about their rules of inference or background logic

as we are today.  Frege’s logic and the development of proof theory in the twentieth century were

responses to worries about the nature of inference.  Frege wanted a gap-free logic, and so specified his

rules of inference syntactically.  The meta-theoretic study of axioms and rules of inference is called proof

theory.

Independent of proof theory, we can also provide a semantics for our language.  The study of the

semantics of a formal language is called model theory.  In semantics, we assign truth values to the simple

sentences of the language and truth conditions for the construction of complex sentences.  We can

determine which wffs are logically true and which inferences are valid by using model theory.

In proof theory, we specify the theorems and acceptable inferences.  In model theory, we

characterize logical truth and validity.  In propositional logic, the theorems were exactly the logical truths. 

So, proof theory and model theory have the same results for propositional logic.

A formal theory, like our system of propositional logic, is called complete when all the logically

true wffs are provable.  A theory is called sound when every provable formula is logically true.  PL is

both complete and sound.  In more sophisticated theories, proof separates from truth.  Kurt Gödel’s first

incompleteness theorem shows that in theories with just some weak mathematical axioms, there will be

true sentences that are not provable.  Gödel uses arithmetic to allow a formal theory to state properties

like provability within the theory.  He constructs a predicate, ‘is provable’ that holds of sentences only

with specific, statable arithmetic properties.  Then, he constructs a theorem that says, truly, of itself that it

is not provable.  Since it is true, it is not provable.  Thus, in theories which allow the Gödel construction,

model theory and proof theory provide different results.

In PL, our semantics consists of constructing truth tables.  We simply interpret the sentences of

PL, by assigning 1 or 0 to each atomic sentence.  We compute truth values of complex propositions by

combining, according to the truth table definitions, the truth values of the atomic sentences.  Since we

have only twenty-six simple terms, the capital English letters, there are only 2  = ~6.7 million possible26

interpretations.  That is a large number, but it is a finite number.

A more useful language will have infinitely many simple terms: P, P', P'', P'''...  A language with

infinitely many formulas will have an even greater infinitely many interpretations.  Still, since we are

working with only two truth values, we can determine the logical truths even in a language with infinitely

many variables.  We just look at the truth tables.

In PL, our proof system consisted of our eighteen rules of natural deduction.  Systems of natural

deduction seem to mirror ordinary reasoning.  The rules of inference are often intuitive.  Despite having

no axioms, we were able to prove theorems using indirect and conditional methods.
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 We do not need any of the wffs which use w, C, and /; see §4.5.1

Other proof systems use axioms.  Here is an example of an axiomatic system I’ll call PS in the

language of propositional logic.

Formal system PS

Language and wffs: those of  PL1

Axiom Schemata:

For any wffs á, â, and ã, statements of the following forms are axioms:

AS1: á e (â e á)

AS2: (á e (â e ã)) e ((á e â) e (á e ã))

AS3: (-á e -â) e (â e á)

Rule of inference:

Modus ponens

PS and our system of natural deduction are provably equivalent, since they are equivalent

languages, and both systems are complete.  Our system of natural deduction makes proofs shorter and

easier than they would be in axiomatic systems of logic.  Natural deduction systems have one main

drawback: their metalogical proofs are more complicated.  When we reason about the system of logic we

have chosen, we ordinarily choose a system that is as simple as it can be: few symbols, few rules.  If we

want to show that a system of natural deduction is legitimate, we can show that it is equivalent to a more

austere system.

Logical truth and validity were easy to define in PL, using the truth tables.  In M  and the other

languages of predicate logic we will study the semantics are more complicated.  Remember, separating

the syntax of our language from its semantics allows us to treat our formal languages as completely

uninterpreted.  We can take our proof system as an empty game of manipulating formal symbols.

 Intuitively, we know what the logical operators mean.  But until we specify a formal

interpretation, we are free to interpret them as we wish.  Similarly, our constants and predicates and

quantifiers are, as far as the syntax of our language specifies, uninterpreted.  To look at the logical

properties of the language, we interpret the logical particles variously.  This way, we can see what is

essential to the language itself and what is imposed by an interpretation.

Interpretations

The first step in formal semantics for predicate logic is to show how to provide an interpretation

of a language.  Then, we can determine its logical truths.  The logical truths will be the wffs that come out

as true under every interpretation.

To define an interpretation in M , or in any of its extensions, we have to specify how to handle

constants, predicates and quantifiers.  To interpret predicates and quantifiers, we use some set theory.  We

need not add set theory to our object language, but we need it in our metalanguage.  We interpret a first-

order theory in four steps.

Step 1. Specify a set to serve as a domain of interpretation.

The domain of interpretation will be the universe of the theory, the objects to which we are

applying the theory.  (Sometimes it is called a domain of quantification.)  We can consider small finite

1 2 domains, like a universe of three objects: U = {1, 2, 3}; or U = {Barack Obama, Hillary Clinton, and

Rahm Emanuel}.  Or, we can consider larger domains, like a universe of everything.
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Actually, there is no set of everything because such a set would lead to paradox.  The set of

woodchucks, for example, is not too large to be a set.  But, the set of things which are not woodchucks is

too large.  Among the things which are not woodchucks are sets.  If we take a set to be any collection,

among the sets would be the set of all sets which are not members of themselves.  But that seemingly-

well-defined set is paradoxical.  If it belongs to itself, then it can not belong to itself.  If it does not belong

to itself, then it should.

This paradox, which Bertrand Russell found in Frege’s set theory, shows that not every property,

like the property of not being a woodchuck, determines a set.  In such cases, we can consider the

collection a proper class instead of a set.  One must be careful handling proper classes, since they are

explosive.  But, we will not run into difficulties with them here.

Step 2. Assign a member of the domain to each constant.

We introduced constants to be used as names of particular things.  In giving an interpretation of

our language, we pick one thing out of the domain for each constant.  Different constants may correspond

to the same object, just as an individual person or thing can have multiple names.

1 For example, if we were using M  and working with a small domain of interpretation U = {1, 2,

3}, we could assign the number one to ‘a’, the number two to ‘b’, and the number three to all of the

remaining nineteen constants (‘c’...‘u’).

Step 3. Assign some set of objects in the domain to each predicate.

We interpret predicates as sets of objects in the domain of which that predicate holds.  If we use a

predicate ‘Ex’ to stand for ‘x has been elected president’, then the interpretation of that predicate will be

1 2the set of things that were elected president.  In U , the interpretation of ‘Ex’ will be empty; in U  it will

be {Barack Obama}.  We can interpret predicates by providing a list of members of the domain or by

providing a rule.  In the domain of natural numbers, for instance, we might define a predicate of even

numbers, say, as {x * x = 2n, for n in the domain}.

Step 4. Use the customary truth tables for the interpretation of the connectives.

We are familiar with this part of the semantics from PL.

In order to characterize truth for sentences of a formal theory of predicate logic, we first define

satisfaction.  Then we can define truth for an interpretation.

Objects in the domain may satisfy predicates; ordered n-tuples (pairs, triples, quadruples, etc.)

may satisfy relations.  A wff will be satisfiable if there are objects in the domain of quantification which

satisfy the predicates indicated in the wff.  A universally quantified sentence is satisfied if it is satisfied by

all objects in the domain.  An existentially quantified sentence is satisfied if it is satisfied by some object

in the domain.

A wff will be true for an interpretation if all objects in the domain of quantification satisfy the

predicates indicated in the wff.  A wff will be logically true if it is true for all interpretations.
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Let’s take, for an example, the interpretation of a small set of sentences, with a small domain.

Sentences: 1. Pa C Pb

2. Wa C -Wb

3. (�x)Px

4. (�x)Px

5. (�x)(Wx e Px)

6. (�x)(Px e Wx)

Domain: {Bob Simon, Rick Werner, Katheryn Doran, Todd Franklin, Marianne Janack, Russell

Marcus, Martin Shuster}

a: Katheryn Doran

b: Bob Simon

Px: {Bob Simon, Rick Werner, Katheryn Doran, Todd Franklin, Marianne Janack, Russell

Marcus, Martin Shuster}

Wx: {Katheryn Doran, Marianne Janack}

We can think of ‘Px’ as meaning that x is a professor of philosophy at Hamilton College.  We can

think of ‘Wx’ as meaning that x is a woman professor of philosophy at Hamilton College.  But, the

interpretation, speaking strictly, is made only extensionally, by the members of the sets listed.

We call an interpretation on which all of a set of given statements come out true a model.  Given

our interpretations of the predicates, not every sentence in our set is satisfied.  1-5 are satisfied.  But, 6 is

not.  If we were to delete sentence 6 from our list, our interpretation would be a model.

To construct a model for a given set of sentences, we specify an interpretation, using the four

steps above.  (Only the first three require any thought, here, since we will assume the standard truth-tables

for the connectives.)

Logical Truth and Validity

A wff will be logically true if it is true for every interpretation.  For PL, the notion of logical

truth was much simpler.  All we had to do was look at the truth tables.  For M , and even more so for F,

the notion of logical truth is just naturally complicated by the fact that we are analyzing parts of

propositions.  Here are two logical truths of M .

LT1 (�x)(Px w -Px)

LT2 Pa w [(�x)Px e Qa]

We can prove that LT1 and LT2 are logical truths by using our proof theory, or by using model-

theoretic reasoning.  Let’s do LT1 by indirect proof.

*1. -(�x)(Px w -Px) AIP

*2. (�x)-(Px w -Px) 1, QE

*3. -(Pa w -Pa) 2, EI

*4. -Pa C --Pa 3, DM

5. (�x)(Px w -Px) 1-4, IP, DN

QED
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We can do LT2 by using a model-theoretic argument in the metalanguage.

Suppose that ‘Pa w [(�x)Px e Qa]’ is not a logical truth.

Then there is an interpretation on which it is false.

On that interpretation, the object assigned to ‘a’ will not be in the set assigned to ‘Px’,

and there is some counterexample to ‘(�x)Px e Qa’

Any counter-example to a conditional statement has to have a true antecedent.

So, every object in the domain of our supposed interpretation will have to be in the set

assigned to ‘Px’.

That contradicts the claim that the object assigned to ‘a’ will not be in the set assigned to

‘Px’.

So, our assumption must be false: no interpretation will make that sentence false.

So, ‘Pa w [(�x)Px e Qa]’ is logically true.

QED

In the next section, I will discuss invalid arguments in predicate logic.  A valid argument is one

which is valid under any interpretation, using any domain.  Our proof system has given us ways to show

that an argument is valid.  But when we introduced our system of inference for PL, we already had a way

of distinguishing the valid from the invalid arguments, using truth tables.  In M , we need a corresponding

method for showing that an argument is invalid.  An invalid argument will have counterexamples,

interpretations on which the premises come out true and the conclusion comes out false.  Understanding

how we interpret theories in the language of predicate language will help us formulate a method for

showing that an argument in predicate logic is invalid.

Exercises 3.6.  Construct models for each of the following theories by specifying a domain of

interpretation (make one up) and interpreting the constants and predicates.

1. Oa C -Ob

Ra C -Ea

Rd C Od C -Ed

(�x)(Rx C Ox)

-(�x)(Ex C Ox)

(�x)(Ex C Rx) e -Oc

2. Mb C -Md

-La C -Wa

Wc C Wd

 (�x)(Mx C Lx)

(�x)(Mx C -Wx)

(�x)(Lx e -Wx)

3. Eb C Ec

Kd C -Ka

-Ea C Pa

(�x)(Ex e -Kx)

(�x)(Px C Kx)

(Eb w Ed) e -Ka
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§3.7: Invalidity in Predicate Logic

We have studied a proof-theoretic method for showing that an argument in M  is valid.  We also

need a method for showing that an argument in M  is invalid.

Recall how we proved that an argument such as 3.7.1 is invalid in propositional logic.

3.7.1 1. A e B

2. -(B C A) /A / B

We lined up the premises and conclusion and assigned truth values to the component sentences to

form a counterexample.  A counterexample is a valuation which makes the premises true and the

conclusion false.

3.7.2

A e B / - (B C A) // A / B

0 1 1 1 1 0 0 0 0 1

The table at 3.7.2 shows that the argument is invalid since there is a counterexample when A is

false and B is true.  We will adapt this method for first-order logic.

If an argument is valid, then it is valid no matter what we choose as our domain of interpretation. 

Logical truths are true for all interpretations.  Even if our domain has only one member, or two or three,

valid arguments have no counterexamples.  Similarly, if an argument is invalid, then there will be a

counterexample in some finite domain.

Universes of One Member

3.7.3 (�x)(Wx e Hx)

(�x)(Ex e Hx) / (�x)(Wx e Ex)

Let’s show that argument 3.7.3 is invalid.  We will start by choosing a domain of one object in

the universe.  We will call it ‘a’.  Since there is only one object in the domain, the universally-quantified

formulas are equivalent to statements about a.

3.7.4 (�x)(Wx e Hx) is equivalent to Wa e Ha

(�x)(Ex e Hx) is equivalent to Ea e Ha

(�x)(Wx e Ex) is equivalent to Wa e Ea

We can thus eliminate the quantifiers and use the same method we used for arguments in PL.  We

assign truth values to make the premises true and the conclusion false, as in 3.7.5.

3.7.5

Wa e Ha / Ea e Ha // Wa e Ea

1 1 1 0 1 1 1 0 0

The argument 3.7.3 is shown invalid in a one-member universe, where Wa is true, Ha is true, and

Ea is false.  Again, a specification of the assignments of truth values to the atomic sentences of the theory,

as in the previous sentence, is called a counterexample.
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The method of finite universes works with existential quantifiers as well, as in argument 3.7.6.

3.7.6 1. (�x)[Ux e (Tx e Wx)]

2. (�x)[Tx e (Ux e -Wx)]

3. (�x)(Ux C Wx) / (�x)(Ux C Tx)

Expanding an existentially-quantified formula to a one-member universe, as in 3.7.7, works

exactly like it does for universally-quantified formulas.  In a world with just one thing, ‘everything’ is the

same as ‘something’.

3.7.7 (�x)[Ux e (Tx e Wx)]   is equivalent to Ua e (Ta e Wa)

(�x)[Tx e (Ux e -Wx)]   is equivalent to Ta e (Ua e -Wa)

(�x)(Ux C Wx)   is equivalent to Ua C Wa

(�x)(Ux C Tx)   is equivalent to Ua C Ta

The construction of a counterexample proceeds in the same way, too.  The table at 3.7.8 shows

that there is a counterexample in a one-member universe, where Ua is true; Ta is false; and Wa is true.

3.7.8

Ua e (Ta e Wa) / Ta e (Ua e - Wa) / Ua C Wa // Ua C Ta

1 1 0 1 1 0 1 1 0 0 1 1 1 1 1 0 0

Be careful not to confuse expansions into finite universes with instantiation in natural deductions. 

In each case, we remove quantifiers.  But, the restrictions on EI play no role in expansions.

All we need is one universe in with a counterexample to show that an argument is invalid. But not

all invalid arguments are shown invalid in a one-member universe.  Even if an argument has no

counterexample in a one-member universe, it might still be invalid.

Universes of More Than One Member

Argument 3.7.9 has no counterexample in a one-member universe.

3.7.9 (�x)(Wx e Hx)

(�x)(Ex C Hx) / (�x)(Wx e Ex)

Wa e Ha / Ea C Ha // Wa e Ea

0 1 0 0

To make the conclusion false, we have to make ‘Wa’ true and ‘Ea’ false.  Then, the second

premise is false no matter what value we assign to ‘Ha’.

To show that 3.7.9 is invalid, we have to consider a larger universe.  If there are two objects in a

universe, a and b, then the expansions of quantified formulas become more complex.  Universally

quantified formulas become conjunctions because every object in the domain has whatever property the

formula ascribes.  Existentially quantified formulas become disjunctions because only some objects have

the property ascribed by the formula.  3.7.10 shows the rules for expanding quantified formulas into two-

and three-member domains.
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3.7.10 In a two-member domain:

(�x)öx becomes öa C öb

(�x)öx becomes öa w öb

In a three-member domain

(�x)öx becomes  öa C öb C öc

(�x)öx becomes öa w öb w öc

Returning to argument 3.7.9, we will expand the argument into in a universe of two members and

then look for a counterexample.

3.7.11 (Wa e Ha) C (Wb e Hb)

(Ea C Ha) w (Eb C Hb) / (Wa e Ea) C (Wb e Eb)

Assign values to each of the terms to construct a counterexample.

(Wa e Ha) C (Wb e Hb)

1 1 1 1 0 1 1

(Ea C Ha) w (Eb C Hb)

0 0 1 1 1 1 1

// (Wa e Ea) C (Wb e Eb)

1 0 0 0 0 1 1

The counterexample for argument 3.7.9 can be read directly from the table at 3.7.11 and is

summarized at 3.7.12.

3.7.12 There is a counterexample in a two-member universe, when:

Wa: true Wb: false

Ha: true Hb: true

Ea: false Eb: true

Constants

When expanding formulas into finite universes, constants get rendered as themselves.  That is, we

don’t expand a term with a constant when moving to a larger universe.  If an argument contains more than

one constant, then it will require a domain larger than one object.

Remember that expanding formulas into finite universes is not the same as instantiating.  In

particular, the restriction on EI that we must instantiate to a new constant does not apply.  If an argument

contains both an existential quantifier and a constant, you may expand the quantifier into a single-member

universe using the constant already present in the argument.  It need not be a new constant.
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3.7.13 can not be shown invalid in a one-member universe, despite having only one constant.

3.7.13 (�x)(Ax C Bx)

Ac /Bc

Ac C Bc / Ac // Bc

0 0 0

We can generate a counterexample in a two-member universe, though, as at 3.7.14.

3.7.14

(Ac C Bc) w (Aa C Ba) / Ac // Bc

1 0 0 1 1 1 1 1 0

There is a counterexample in a two-member universe, when:

Aa: true Ac: true

Ba: true Bc: false

Some arguments require three-member, four-member, or larger universes to be shown invalid.

Propositions Whose Main Operator is Not a Quantifier

The main operator of the second premise of 3.7.15 is a e, not a quantifier.  On each side of the

conditional, there is a quantifier.  There is no counterexample to the argument in a one-member universe,

though the expansion is straightforward.

3.7.15 (�x)(Px C Qx)

(�x)Px e (�x)Rx 

(�x)(Rx e Qx) / (�x)Qx

Pa C Qa / Pa e Ra / Ra e Qa // Qa

0 0 0

In a two-member universe, each quantifier in the second premise is unpacked independently, as in

3.7.16.  Notice that the main operator of the premise remains the conditional.

3.7.16 (�x)Px e (�x)Rx becomes (Pa C Pb) e (Ra w Rb)

We can clearly see here the difference between instantiation and expansion into a finite universe. 

We can not instantiate the formula, but we expand each quantifier.
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We can construct a counterexample for the argument 3.7.15 in a two-member universe.

3.7.16

(Pa C Qa) w (Pb C Qb)

0 0 1 1 1 1

(Pa C Pb) e (Ra w Rb)

1 1 0 1 1

(Ra e Qa) C (Rb e Qb)

0 1 0 1 1 1 1

// Qa C Qb

0 0 1

There is a counterexample in a two-member universe, when:

Pa: either true or false Pb: true

Qa: false Qb: true

Ra: false Rb: true

There is another counterexample which I leave as an exercise.
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Exercises 3.7.  Show each of the following arguments invalid by generating a counterexample.

1. 1. (�x)(Ax w Bx)

2. (�x)Ax / (�x)Bx

2. 1. (�x)(Cx e Dx)

2. Da / Ca

3. 1. (�x)(Ex C Fx)

2. Fb / Eb

4. 1. (�x)(Kx / Lx)

2. (�x)(Mx C Lx) / (�x)(Nx C Kx)

5. 1. (�x)[(Gx C Hx) w Ix]

2. (-Hc e Jc) e -Ic / (�x)(Gx C -Jx)

6. 1. (�x)Dx e (�x)Gx

2. (�x)(Dx C Ex) / (�x)(Ex C Gx)

7. 1. (�x)(Px / Rx)

2. (�x)(Qx C -Sx) / (�x)(Qx e -Rx)

8. 1. (La C -Lb) C (-Mc C Md)

2. (�x)(Lx C Nx)

3. (�x)(Mx C Ox)

4. (�x)[(Lx w Mx) e Ox] / (�x)(Nx e Ox)

9. 1. (�x)[(Ax C Bx) C Cx]

2. (�x)[(Ax C Bx) C -Cx]

3. (�x)(Bx C Dx)

4. -Da / (�x)(Cx e Dx)

10. 1. Pa C Qb

2. (�x)(Rx C Sx)

3. (�x)(Rx C -Sx)

4. (�x)(Sx e Qx) / (�x)(Rx e Px)

11. 1. (�x)(Lx C Nx)

2. (�x)(Mx C -Nx)

3. (�x)(Lx e Ox) / (�x)(Mx e Ox)

12. 1. (�x)(Ix C Jx)

2. (�x)(-Ix C Jx)

3. (�x)(Jx e Kx) / (�x)(Ix e Kx)

13. 1. (�x)(Ax C Bx)

2. (�x)(Cx C -Bx)

3. (�x)[(Ax C Cx) e Dx] / (�x)(Bx e Dx)
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14. 1. (�x)(Rx w -Tx)

2. (�x)(-Rx C Tx)

3. (�x)(Sx / Tx) / (�x)(Sx e Rx)

15. 1. (�x)Ax e (�x)Bx

2. (�x)(Ax C -Bx)

3. (�x)(Cx e Bx) / (�x)(Cx e Ax)

16. 1. (�x)[Ox C (Px / Qx)]

2. (�x)[-Ox C (Px e Qx)]

3. (�x)(Rx e Ox) / (�x)(Rx e Qx)

17. 1. (�x)(Ex C Fx)

2. (�x)(Ex C -Fx)

3. (�x)(Fx / Gx) / (�x)Ex

18. 1. (�x)(Ax e Bx) e (�x)Cx

2. (�x)(Ax C -Bx)

3. (�x)(Dx e Bx) / (�x)(Dx e Cx)

19. 1. (�x)Ex e (�x)Fx

2. (�x)(Ex C -Fx)

3. (�x)[(Gx w Hx) e Fx] / (�x)(Hx e Ex)

20. 1. (�x)(Jx / Ix) C (�x)Kx

2. (�x)(Ix C -Kx)

3. (�x)(Lx e Kx)

4. -Ja C Jb / (�x)(Lx e Ix)

21. 1. (�x)(Mx e Nx)

2. (�x)(-Nx C Ox)

3. (�x)(Px e -Ox)

4. Ma C Mb / (�x)(Px e Nx)

22. 1. (�x)Tx e (�x)Sx

2. (�x)(-Sx C Tx)

3. (�x)(Ux e Sx) / (�x)(Ux e Tx)

23. 1. (�x)(Nx C Ox)

2. (�x)(-Nx C Px)

3. (�x)(Px e Qx) / (�x)(Nx e Qx)

24. 1. (�x)(-Hx C Ix)

2. (�x)(Hx C -Ix)

3. (�x)(Jx / Ix) / (�x)(Hx e Jx)

25. 1. (�x)(Kx C Mx)

2. La C Lb / (�x)(Lx / Mx)
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26. 1. (�x)(-Ax / Cx)

2. (�x)(Ax C Cx)

3. (�x)(Bx e Ax) / (�x)(Cx e Bx)

27. 1.( Ha C -Ia) C Ja

2. (�x)[Ix C (Jx / -Kx)]

3. (�x)(-Jx w Kx) / (�x)Kx

28. 1. (�x)(Px e Qx)

2. (�x)(-Px / Rx)

3. (�x)(Qx C Rx)

4. (Pa C Pb) C (-Pc C -Pd) / -Qb

29. 1. (�x)(Hx C Ix)

2. (�x)(Hx C -Ix)

3. (�x)(Jx e Ix) / (�x)(Jx e Hx)

30. 1. (�x)(Kx C -Lx)

2. (�x)(Kx C Lx)

3. (�x)[(Mx w Nx) e Lx] / (�x)(Mx e Kx)

31. 1. (�x)Sx

2. (�x)[Sx e (Tx e -Ux)]

3. Ua C Ub

4. (�x)-Ux / (�x)(Sx C -Tx)

32. 1. (�x)(Ax C Bx)

2. (�x)[(Ax C -Bx) C Cx]

3. (�x)(-Ax e Dx)

4. (�x)(Dx e Cx) / Ca w Cb

33. 1. (�x)(Fx C Gx)

2. (�x)(-Fx C Gx)

3. (�x)[Gx e (Fx / Hx)] / (�x)(Fx / Hx)

34. 1. (�x)[(Ex C Fx) C Gx]

2. (�x)[(Ex C -Fx) C Gx]

3. (�x)(-Ex C Gx)

4. (�x)(Gx e Hx)

5. (�x)(-Gx e -Ex) / Ha w Fa

35. 1. (�x)(Px C Qx)

2. (�x)(Rx / -Sx)

3. (�x)Sx

4. (�x)[(Qx w Rx) e -Sx] / (�x)(Qx C -Rx)
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§3.8: Translation Using Relational Predicates

Argument 3.1.1 showed that some intuitively-valid inferences were not valid in PL.  We moved

to M  in response.  Argument 3.8.1 shows that some intuitively-valid inferences are not valid in M  and

that we should look at a further refinement of our logic.

3.8.1 Andrew is taller than Bob. 

Bob is taller than Charles.   

For any x, y and z, if x is taller than y and y is taller than z, then x is taller than z.

So, Andrew is taller than Charles.

In M , with only monadic predicates, we translate the two first sentences with different predicates. 

The first sentence ascribes the property of being taller than Bob to Andrew.  The second sentence ascribes

the property of being taller than Charles to Bob.  Being taller than Charles is of course a different

property from being taller than Bob.

3.8.2 Andrew is taller than Bob Ua

Bob is taller than Charles Tb

In examining the argument 3.8.1, we can see that what we really want is a more-general

predicate, being taller than, that takes two objects.  Such a predicate is called dyadic.  3.8.3 contains

examples of various dyadic predicates.

3.8.3 Txy: x is taller than y

Kxy: x knows y

Bxy: x believes y

Dxy: x does y

We can construct three-place predicates too, called triadic predicates, as at 3.8.4.

3.8.4 Gxyz: x gives y to z

Kxyz: x kisses y in z

Bxyz: x is between y and z

Further, we can construct four-place and higher-place predicates.  All predicates which take more

than one object are called relational, or polyadic.  With relational predicates, we now have a choice how

to regiment relations.

3.8.5 Andrés loves Beatriz

We could regiment 3.8.5 in monadic predicate logic as ‘La’.  In that case, ‘a’ stands for Andrés,

and ‘L’ stands for the property of loving Beatriz.  But, if we want to use ‘L’ to stand for the property of

loving, it will have to take two objects: the lover and the lovee.  We can introduce a relational predicate,

‘Lxy’, which means that x loves y.  Then, we regiment 3.8.5 as 3.8.6.

3.8.6 Lab

A similar translation, using a three-place relation for giving, can help us avoid using an overly-

simple monadic predicate for 3.8.7.
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3.8.7 Camila gave David the earring.

Instead of using ‘Gx’ for ‘x gives David the earring’, we can invoke ‘Gxyz’ for ‘x gives y to z’. 

Then, 3.8.7 is regimented as 3.8.8.

3.8.8 Gced

By using relational predicates, we reveal more logical structure.  The more logical structure we

reveal, the more we can facilitate inferences.  We will mostly, in this text, use two- and three-place

relations.  But, more-complex relations can be useful.  For example, 3.8.9, couched in a serious scientific

theory, might be regimented using a five-place relation.

3.8.9 There is something blue over there now.

We need one place for the object.  To indicate its spatial position, we could use three places: one

for each position on a three-dimensional coordinate axis.  We add one more place for a temporal location. 

3.8.10 uses constants for spatial and temporal locations, but we could of course quantify over them as

well. 

3.8.10 (�x)Bxabct

In other words, something is blue at spatial location a,b,c at time t.  The utility of a language with

more variables (and thus more quantifier variables) should be apparent.

By introducing relational predicates, we have extended our language.  We are now using a

language I call F, for Full First-Order Predicate logic, rather than M .  The differences here between F and

M  are minor.  The two languages use the same vocabulary.  The only significant difference in the

formation rules is in the construction of atomic formulas.

Beyond this text, the differences between M  and F are significant; we have breached a barrier.  M

admits of a decision procedure.  If a theory admits of a decision procedure, there is a way of deciding, for

any given formula, whether it is a theorem or not.  F is not decidable.  There are formulas for which there

are no effective methods for deciding whether they are theorems or not.

Formation rules for wffs of F

1. An n-place predicate followed by n singular terms is a wff.

2. For any variable â, if á is a wff that does not contain either ‘(�â)’ or ‘(�â)’, then ‘(�â)á’ and

‘(�â)á’ are wffs.

3. If á is a wff, so is -á.

4. If á and â are wffs, then so are:

(á C â)

(á w â)

(á e â)

(á / â)

5. These are the only ways to make wffs.

Remember that singular terms, for now, are either constants or variables; later we will add

functions.  
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You can determine the value of ‘n’ in an n-place predicate just by counting the number of

singular terms that follow the predicate letter.  In 3.8.11, there are one-place, two-place, three-place, and

four-place predicates.  Despite using the same predicate-letter, ‘P’, these predicates are all different.

3.8.11 Pa

Pab

Pabc

Pabcd

The semantics of M  must also be adjusted to account for relational predicates.  Recall that there

were four steps for providing a standard formal semantics for M .

Step 1. Specify a set to serve as a domain of interpretation, or domain of quantification.

Step 2. Assign a member of the domain to each constant.

Step 3. Assign some set of objects in the domain to each predicate.

Step 4. Use the customary truth tables for the interpretation of the connectives.

The introduction of relational predicates requires adjustment to Step 3.  For an interpretation of F,

we assign sets of ordered n-tuples to each relational predicate.

An n-tuple is an n-place relation.  Essentially, it’s an ordered sequence of objects, a set with

structure.  The sets {1, 2} and {2, 1} are equivalent, since all that matters for the constitution of a set is its

members.  In contrast, the ordered triple <1, 2, 5> is distinct from the ordered triple <2, 1, 5> which is

distinct from the ordered triple <5, 2, 1> even though they all have the same members.

For the semantics of F, a two-place predicate is assigned sets of ordered pairs, a three-place

predicate is assigned sets of three-place relations, etc.  Given a domain of {1, 2, 3}, the relation ‘Gxy’,

which could be understood as meaning ‘is greater than’ would be standardly interpreted by {<2,1>,

<3,1>, <3, 2>}.

Our definitions of satisfaction and truth will need to be adjusted.  Objects in the domain can

satisfy predicates; that remains the case for one-place predicates.  Ordered n-tuples may satisfy relational

predicates.  A wff will be satisfiable if there are objects in the domain of quantification which stand in the

relations indicated in the wff.  A wff will be true for an interpretation if all objects in the domain of

quantification stand in the relations indicated in the wff.  And, still, a wff will be logically true if it is true

for every interpretation.
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For an example, let’s extend the interpretation of a small set of sentences with a small domain

that we considered when originally discussing semantics of M , in §3.6.

Sentences: 1. Pa C Pb

2. Wa C -Wb

3. Oab

4. Obc

5. (�x)(Px C Oxb)

6. (�x)(Px C Obx)

7. (�x)[Wx e (�y)(Px C Oyx)]

Domain: {Bob, Rick, Katheryn, Todd, Marianne, Russell, Martin}

a: Katheryn

b: Bob 

c: Russell 

Px: {Bob, Rick, Katheryn, Todd, Marianne, Russell, Martin}

Wx: {Katheryn, Marianne}

Oxy: {<Bob, Rick>, <Bob, Katheryn>, <Bob, Todd>, <Bob, Marianne>, <Bob,

Russell>, <Bob, Martin>, <Rick, Katheryn>, <Rick, Todd>, <Rick, Marianne>,

<Rick, Russell>, <Rick, Martin>, <Katheryn, Todd>, <Katheryn, Marianne>,

<Katheryn, Russell>,  <Katheryn, Martin>, <Todd, Marianne>, <Todd, Russell>,

<Todd, Martin>, <Marianne, Russell>,<Marianne, Martin>, <Russell, Martin>}

On this interpretation, 1 and 2 are true; 3 is false while 4 is true; 5 is false but 6 and 7 are true.

Quantifiers with relational predicates

We can now translate the first two premises of 3.8.1 and the conclusion.

3.8.12 Andrew is taller than Bob. Tab

Bob is taller than Charles. Tbc

Andrew is taller than Charles. Tac

To regiment the third premise of 3.8.1, we need multiple, overlapping quantifiers.  Let’s see how

to use quantifiers with relational predicates in steps.  We’ll start with sentences with just one quantifier. 

The sentences at 3.8.13 use ‘Bxy’ for ‘x is bigger than y’.

3.8.13 Joe is bigger than some thing. (�x)Bjx

Something is bigger than Joe. (�x)Bxj

Joe is bigger than everything. (�x)Bjx

Everything is bigger than Joe. (�x)Bxj

Next, we can introduce overlapping quantifiers.  3.8.14 uses ‘Lxy’ for ‘x loves y’.

3.8.14 Everything loves something. (�x)(�y)Lxy

Note the different quantifier letters: overlapping quantifiers must use different variables.  Also,

the order of quantifiers matters.  3.8.15 differs from 3.8.14.
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3.8.15 Something loves everything. (�x)(�y)Lxy

Switching the order of the quantifiers in front of a formula changes its meaning.  We now can

regiment 3.8.1 completely, as the argument 3.8.16.

3.8.16 1. Tbc

2. Tab

3. (�x)(�y)(�z)[(Txy C Tyz) e Txz] / Tac

We will return to deriving the conclusion of this argument in §3.10.  For the remainder of this

section, and in the next section as well, we will look at some more complicated translations.

3.8.17 Something teaches Plato. (Txy: x teaches y) (�x)Txp

3.8.18 Someone teaches Plato. (Px: x is a person) (�x)(Px C Txp)

3.8.19 Plato teaches everyone. (�x)(Px e Tpx)

3.8.20 Everyone teaches something. (�x)[Px e (�y)Txy]

3.8.21 Some people teach themselves. (�x)(Px C Txx)

Let’s take ‘teacher’ to refer to someone who teaches something and ‘student’ to refer to someone

who is taught (by something).  Then, we can use ‘Txy’, for ‘x teaches y’ to characterize both teachers and

students.

3.8.22 There are teachers. (�x)(�y)Txy

3.8.23 There are students. (�x)(�y)Tyx

3.8.24 Skilled teachers are interesting. (�x)[(�y)Txy e (Sx e Ix)]

3.8.25 Skilled teachers are better than unskilled teachers.

(�x){[(�y)Txy C Sx] e {(�z)[(�w)Tzw C -Sz] e Bxz}}

When you have multiple quantifiers in a proposition, they can take wide scope by standing in

front of the proposition, as in 3.8.26.  Or they can take narrow scope by being located inside the

proposition, as in 3.8.27.

3.8.26 (�x)(�y)[(Px C Py) C Lxy]

3.8.27 (�x)[Px C (�y)(Py C Lxy)]

When translating, it is best form only to introduce quantifiers when needed.  Give your

quantifiers as narrow a scope as possible.  On occasion, we will put all quantifiers in front of a formula,

using wide scope.  But, moving quantifiers around is not always simple, and we must be careful.  3.8.26

and 3.8.27 are logically equivalent.  But, 3.8.28 and 3.8.29 are not.

3.8.28 (�x)[Px e (�y)(Py C Qxy)]

3.8.29 (�y)(�x)[Px e (Py C Qxy)]

3.8.28 could be used to regiment ‘all people love someone’.  Using the same interpretation of the

predicates, 3.8.29 would stand for ‘there is someone everyone loves’.  3.8.28 is plausible.  3.8.29 is not. 

There are rules for moving quantifiers through a formula without altering the meaning and which we will

discuss in the next section.
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Exercises 3.8a.  Translate each sentence into predicate logic using relational predicates.

1. David teaches Chris. (Txy: x teaches y)

2. Earth isn’t bigger than Jupiter. (Bxy: x is bigger than y)

3. Frances loves Holly. (Lxy: x loves y)

4. Leo is taller than Cathy. (Txy: x is taller than y)

5. Alexis is greeted by Ben. (Gxy: x greets y)

6. George borrows Hector’s lawnmower. (Bxyx: x borrows y from z)

7. José introduces Wilma to Kevin. (Ixyz: x introduces y to z)

8. Marco moves from Italy to Spain. (Mxyz: x moves to y from z)

9. Nicole does not drive from her office to her school. (Dxyz: x drives from y to z)

10. Ricardo gives the wedding ring to Olivia. (Gxyz: x gives y to z)

Exercises 3.8b. Translate each of the following into predicate logic using relational predicates.

1. Someone is smarter than Albert. (a, Px, Sxy: x is smarter than y)

2. Everyone is smarter than Albert.

3. Albert is smarter than everyone.

4. No one is smarter than Albert.

5. Everyone is smarter than someone.

6. Someone is smarter than everyone.

7. All rats are larger than Ben. (b, Rx, Lxy: x is larger than y)

8. Ben is larger than all rats.

9. Some rats are larger than Ben.

10. No rats are larger than Ben.

11. All rats are larger than some mice. (Mx, Rx, Lxy: x is larger than y)

12. Some rats are larger than some hamsters. (Hx, Rx, Lxy: x is larger than y)
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13. Orsola introduces Chiara to Marina. (c, m, o, Ixyz: x introduces y to z)

14. Someone introduces Chiara to Marina. (c, m, Px, Ixyz: x introduces y to z)

15. Someone introduces Chiara to everyone. (c, Px, Ixyz: x introduces y to z)

16. All planets are smaller than Jupiter. (j, Px, Sxy: x is smaller than y)

17. All runners are healthier than some people. (Px, Rx, Hxy: x is healthier than y)

18. All kings are luckier than all paupers. (Kx, Px, Lxy: x is luckier than y) 

19. All birds live in some nest. (Bx, Nx, Lxy: x lives in y)

20. Some CEO is wealthier than everyone. (Cx, Px, Wxy: x is wealthier than y)

21. Some cheetahs are faster than all lions. (Cx, Lx, Fxy: x is faster than y)

22. No tiger is faster than all cheetahs. (Cx, Tx, Fxy: x is faster than y)

23. No lion is faster than some tigers. (Lx, Tx, Fxy: x is faster than y)

24. Some dancers are thinner than some people. (Dx, Px, Txy: x is thinner than y)

25. All dancers are fitter than some people. (Dx, Px, Fxy: x is fitter than y)

26. No dancer is clumsier than some football player. (Dx, Fx, Cxy: x is clumsier than y)

27. All jellybeans are sweeter than all fruit. (Fx, Jx, Sxy: x is sweeter than y)

28. All children deserve to go to school. (Cx, Sx, Dxy: x deserves y)

29. All math majors take a calculus class. (Cx, Mx, Txy: x takes y)

30. Most math majors take a statistics class. (Mx, Sx, Txy: x takes y)

31. Some robbers steal money from a bank. (Bx, Mx, Rx, Sxyz: x steals y from z)

32. Some kind people help some endangered species. (Ex, Kx, Px, Sx, Hxy: x helps y)

33. Some cruel people starve animals. (Ax, Cx, Px, Sxy: x starves y)

34. Some firemen rescue victims from danger. (Fx, Vx, Dx, Rxyz: x rescues y from z)

35. Jen reads all books written by Asimov. (j, a, Bx, Rxy: x reads, Wxy: x writes y)

36. Some people read all books written by Asimov. (Bx, Px, Rxy: x reads, Wxy: x writes y)

37. No god is mightier than herself. (Gx, Mxy: x is mightier than y)
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Adapted from Copi, Symbolic Logic, 5th ed., MacMillan Publ., 1979, pp 127-8.2

38. No sword is mightier than any pen. (Px, Sx, Mxy: x is mightier than y)

39. Everyone buys something from some merchant. (Mx, Px, Bxyz: x buys y from z)

40. No merchant has everyone for a customer.

Exercises 3.8c.  Use the translation key to translate the formulas into natural English sentences.2

Ax: x is silver

Bxy: x belongs to y

Cx: x is a cloud

Cxy: x keeps company with y

Dx: x is a dog

Ex: x is smoke

Fx: x is fire

Fxy: x is fair for y

g: God

Gx: x is glass

Gxy: x gathers y

Hx: x is home

Hxy: x helps y

Ixy: x is in y

Jxy: x is judged by y

Kxy: x is a jack of y

Lx: x is a lining

Lxy: x is like y

Mx: x is moss

Mxy: x is master of y

Px: x is a person

Qx: x is a place

Rx: x rolls

Sx: x is a stone

Tx: x is a trade

Txy: x should throw y

Ux: x is a house

Uxy: x comes to y

Vxy: x ventures y

Wx: x waits

Yx: x is a day

1. (�x)[Dx e (�y)(Yy A Byx)]

2. (�x)[(�y)(Py A Fxy) e (�z)(Pz e Fxz)]

3. (�x)[(Rx A Sx) e (�y)(My e -Gxy)]

4. (�x)[(Px A Wx) e (�y)Uyx]

5. (�x)[(Px A Hxx) e Hgx]

6. (�x)[Hx e (�y)(Qy e -Lyx)]

7. (�x){Cx e (�y)[(Ay A Ly) A Byx]}

8. (�x)[Px e (�y)(Cxy e Jxy)]

9. (�x){Qx e [(�y)(Ey A Iyx) e (�z)(Fz A Izx)]}

10. (�x){[Px A (�y)(Ty e Kxy)] e (�z)(Tz e -Mxz)}

11. (�x){{Px A (�y)[(Gy A Uy) A Ixy]} e (�z)(Sz e -Txz)}

12. (�x){[Px A (�y)-Vxy] e (�z)-Gxz}
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§3.9: Rules of Passage

Quantifiers: narrow and wide scope 

I mentioned in the last section that when translating, it is good form give your quantifiers narrow

scope.  Further, moving quantifiers through a formula can alter the meaning of the formula.  In this

section, we will look at rules for moving quantifiers through formulas and practice some translation in the

process.

In some cases, we can move quantifiers around without much worry.  For example, if all

quantifiers are universal, we can pull them in or out at will, as long as we are careful not to accidentally

bind any variables.  3.9.1 can be written as any of 3.9.2 - 3.9.4.

3.9.1 Everyone loves everyone

3.9.2  (�x)[Px e (�y)(Py e Lxy)]

3.9.3 (�x)(�y)[(Px C Py) e Lxy]

3.9.4  (�y)(�x)[(Px C Py) e Lxy]

Technically, 3.9.4 is ‘everyone is loved by everyone’.  But all three statements are logically

equivalent.  Similarly, 3.9.5 can be written as any of 3.9.6 - 3.9.8.

3.9.5 Someone loves someone.

3.9.6 (�x)[Px C (�y)(Py C Lxy)]

3.9.7 (�x)(�y)[(Px C Py) C Lxy]

3.9.8 (�y)(�x)[(Px C Py) C Lxy]

3.9.8 is ‘someone is loved by someone’.  But, again, 3.9.6 - 3.9.8 are all logically equivalent.

When you mix universal quantifiers with existential quantifiers, you must be careful.  Slight

changes, like reversing the order of the quantifiers, can change the meaning of a proposition.  None of

3.9.9 - 3.9.12 are equivalent.

3.9.9 Everyone loves someone. (�x)(�y)[Px e (Py C Lxy)]

3.9.10 Everyone is loved by someone. (�x)(�y)[Px e (Py C Lyx)]

3.9.11 Someone loves everyone. (�x)(�y)[Px C (Py e Lxy)]

3.9.12 Someone is loved by everyone. (�x)(�y)[Px C (Py e Lyx)]

Note that the first word in each translation above corresponds to the leading quantifier.  Also,

note that the connectives which directly follow the ‘Px’ and the ‘Py’ are determined by the quantifier

binding that variable.  This tendency is clearer if we take the quantifiers inside.

3.9.9' (�x)[Px e (�y)(Py C Lxy)]

3.9.10' (�x)[Px e (�y)(Py C Lyx)]

3.9.11' (�x)[Px C (�y)(Py e Lxy)]

3.9.12' (�x)[Px C (�y)(Py e Lyx)]
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 Quine notes that the rules of passage were so-called by Herbrand, in 1930, but were present in3

Whitehead and Russell’s Principia Mathematica.  Prenex normal form was used by Skolem for his proof

procedure, in 1922.

While all of these shifts of quantifiers are acceptable, moving quantifiers within a proposition is

tricky.  For example, 3.9.13 and 3.9.14 are not equivalent, as a possible interpretation of each shows.

3.9.13 (�x)[(�y)Lxy e Hx] All lovers are happy

3.9.14 (�x)(�y)(Lxy e Hx) Everything has something such that loving it

will make it (the lover) happy.

From 3.9.13 to 3.9.14, we have moved the existential quantifier out front, and merely brought the

‘Hx’ into the scope of ‘(�y)’, which does not bind it.  3.9.13 does not commit to the existence of

something that, by being loved, makes something happy.  3.9.14 does.  Consider the universe in which

there are things that can never be happy, i.e. for which nothing could make them happy.  3.9.13 could still

be true, but 3.9.14 would be false.

We need a set of rules to determine which moves of quantifiers are acceptable.  Also motivating

the need for such rules, there are metalogical proofs which require that every statement of F is equivalent

to a statement with all quantifiers having wide scope.  Such a form is called prenex normal form (PNF). 

In order to transform formulas to PNF, we can use what are sometimes called rules of passage.  The rules

of passage are rules of equivalence, justified by the equivalence of statements of the paired forms and

applicable to whole lines or to parts of lines.3

Rules of Passage

For all variables á and all formulas Ã and Ä:

RP1: (�á)(Ã w Ä) W  (�á)Ã w (�á)Ä
RP2: (�á)(Ã C Ä) W  (�á)Ã C (�á)Ä

For all variables á, all formulas Ã containing á, and all formulas Ä not containing á:

RP3: (�á)(Ä C Ãá)  W  Ä C (�á)Ãá
RP4: (�á)(Ä C Ãá)  W  Ä  C (�á)Ãá

RP5: (�á)(Ä w Ãá) W  Ä w (�á)Ãá
RP6: (�á)(Ä w Ãá) W  Ä w (�á)Ãá

RP7: (�á)(Ä e Ãá) W  Ä e (�á)Ãá
RP8: (�á)(Ä e Ãá)  W  Ä e (�á)Ãá

RP9: (�á)(Ãá e Ä) W  (�á)Ãá e Ä
RP10: (�á)(Ãá e Ä)  W (�á)Ãá e Ä 

When moving quantifiers using the rules of passage, be careful not to have any accidental

binding, or accidental removing from binding.
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Let’s look at a few examples.  3.9.15 and 3.9.16 are equivalent by RP4.

3.9.15 (�x)[Px C (�y)(Qy e Rxy)]

3.9.16 (�x)(�y)[Px C (Qy e Rxy)]

If we didn’t have RP4, we could show their equivalence by deriving 3.9.15 from 3.9.16 and

3.9.16 from 3.9.15.  ‘á | â’ means that â can be derived from á; ‘|’ is the metalinguistic form of ‘e’  I

will write its negation as ‘-|’.  (We haven’t discussed how the rules of inference have to be restricted

when using relational predicates, but the change is small and all of the derivations in this section are

acceptable.)

3.9.15 | 3.9.16

1. (�x)[Px C (�y)(Qy e Rxy)]

2. Pa C (�y)(Qy e Ray) 1, EI

*3. Qy ACP

*4. (�y)(Qy e Ray) 2, Com, Simp

*5. Qy e Ray 4, UI

*6. Ray 5, 3, MP

7. Qy e Ray 3-6, CP

8. Pa 2, Simp

9. Pa C (Qy e Ray) 8, 7, Conj

10. (�y)[Pa C (Qy e Ray)] 9, UG

11. (�x)(�y)[Px C (Qy e Rxy)] 10, EG

QED

3.9.16 | 3.9.15

1. (�x)(�y)[Px C (Qy e Rxy)]

2. (�y)[Pa C (Qy e Ray)] 1, EI

3. Pa C (Qy e Ray) 2, UI

4. Qy e Ray 3, Com, Simp

5. (�y)(Qy e Ray) 4, UG

6. Pa 3, Simp

7. Pa C (�y)(Qy e Ray) 6, 5, Conj

8. (�x)[Px C (�y)(Qy e Rxy) 7, EG

QED

3.9.17 and 3.9.18 are equivalent by RP8:

3.9.17 (�x)(�y)[Px e (Qy e Rxy)]

3.9.18 (�x)[Px e (�y)(Qy e Rxy)]

3.9.14, above, is equivalent to 3.9.19 by RP9.

3.9.14 (�x)(�y)(Lxy e Hx)

3.9.19 (�x)[(�y)Lxy e Hx]
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The transformation between 3.9.14 and 3.9.19 might strike one as strange.  It might even make

one call RP9 into question.  But, notice that we can make the same transformation without RP9.

3.9.14 1. (�x)(�y)(Lxy e Hx)

2. (�x)(�y)(-Lxy w Hx) 1, Impl

3. (�x)(�y)(Hx w -Lxy) 2, Com

4. (�x)[Hx w (�y)-Lxy] 3, RP5

5. (�x)[(�y)-Lxy w Hx] 4, Com

6. (�x)[-(�y)Lxy w Hx] 5, QE

3.9.19 7. (�x)[(�y)Lxy e Hx] 6, Impl  

3.9.13, above, is equivalent by RP10 to 3.9.20.

3.9.13 (�x)[(�y)Lxy e Hx]

3.9.20 (�x)(�y)(Lxy e Hx)

Both formulas can be interpreted as, “If anyone loves someone, then s/he is happy.”

3.9.21 and 3.9.22 are equivalent, also by RP10.

3.9.21 (�x)[Px e (�y)Qy]  

3.9.22 (�x)Px e (�y)Qy

Proving the equivalence of RP10

We will not prove the equivalence of all of the Rules of Passage.  Most of them are quite

intuitive.  RP9 and RP10 are the two oddballs.  Let’s take a moment to prove RP10.

RP10: (�á)(Ãá e Ä)  W (�á)Ãá e Ä 

Consider first what happens when Ä is true, and then when Ä is false.  (As an example, in 3.9.21,

Ä is ‘(�y)Qy’.)

If Ä á is true, then both formulas will turn out to be true.

The consequent of the formula on the right is just Ä.

So, if Ä is true, the whole formula on the right is true.

Ãá e Ä is true for every instance of á, since the consequent is true.

So, the universal generalization of each such formula (the formula on the left) is true.

If Ä is false, then the truth value of each formula will depend.

To show that the truth values of each formula will be the same, we will show that the

formula on the right is true in every case that the formula on the left is true and

that the formula on the left is true in every case that the formula on the right is.

If the formula on the left turns out to be true when Ä is false, it must be because Ãá is

false, for every á.

But then, (�á)Ãá is false, and so the formula on the right turns out to be true.

If the formula on the right turns out to be true, then it must be because (�á)Ãá is false.

And so, there will be no value of á that makes Ãá true, and so the formula on the right

will also turn out to be (vacuously) true.

QED
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Using the Rules of Passage in Translations

RP10 allows us to translate 3.9.23 as 3.9.24 or as 3.9.25; the latter two are thus logically

equivalent formulas.

3.9.23 If anything was damaged, then everyone gets upset

3.9.24 (�x)Dx e (�x)(Px e Ux)

3.9.25 (�x)[Dx e (�y)(Py e Uy)]

Using the rules of passage, we can transform any statement of predicate logic into prenex normal

form, with all the quantifiers out front.  3.9.26 uses only monadic predicates; still the rules of passage

apply.

3.9.26 If there are any wildebeest, then if all lions are hungry, they will be eaten.

3.9.27 (�x){Wx e [(�y)(Ly e Hy) e Ex]}

3.9.28 (�x){Wx e (�y)[(Ly e Hy) e Ex]} by RP9

3.9.29 (�x)(�y){Wx e [(Ly e Hy) e Ex]} by RP7

3.9.27 is the most natural translation of 3.9.26.  It would be unlikely that any one would translate

3.9.26 as either 3.9.28 or 3.9.29.  But our rules of inference only allow us to remove quantifiers from

whole lines (i.e. when they are the main operators).  So for the purposes of derivations, it may be useful to

have the quantifiers out front.

Prenex Normal Form

It is not the case that a given formula has a unique prenex form.  For example, 3.9.30 comes from

Quine.

3.9.30 If there is a philosopher whom all philosophers contradict, then there is a

philosopher who contradicts himself.

3.9.31   (�x)[Fx C (�y)(Fy e Gyx)] e (�x)(Fx C Gxx)

In order to put this sentence into prenex form, we have first to change the latter ‘x’s to ‘z’s, so

that when we stack the quantifiers in front, we won’t get accidental binding.

3.9.32 (�x)[Fx C (�y)(Fy e Gyx)] e (�z)(Fz C Gzz)

In the first set of transformations to prenex form, I will work with the ‘z’, then the ‘y’.

(�z)(�x){[Fx C (�y)(Fy e Gyx)] e (Fz C Gzz)} by RP7

(�z)(�x){(�y)[Fx C (Fy e Gyx)] e (Fz C Gzz)} by RP4

3.9.33 (�z)(�x)(�y){[Fx C (Fy e Gyx)] e (Fz C Gzz)} by RP9
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In the second set, I will work with the ‘x’, then the ‘y’, then the ‘z’.

(�x){[Fx C (�y)(Fy e Gyx)] e (�z)(Fz C Gzz)} by RP10

(�x){(�y)[Fx C (Fy e Gyx)] e (�z)(Fz C Gzz)} by RP4

(�x)(�y){[Fx C (Fy e Gyx)] e (�z)(Fz C Gzz)} by RP9

3.9.34 (�x)(�y)(�z){[Fx C (Fy e Gyx)] e (Fz C Gzz)} by RP7

3.9.33 and 3.9.34 are equivalent to 3.9.32 (and 3.9.31).  3.9.33 and 3.9.34 are both in prenex

form.  But, they differ in form from each other.  There are two other prenex forms equivalent to 3.9.32,

which I leave to you as an exercise.

More entailments, and some non-entailments

Let’s look at some more entailments and equivalences in predicate logic, and some statements

that are not equivalent.

3.9.35 | 3.9.36 but 3.9.36 -| 3.9.35.

3.9.35 (�x)[Px C (�y)(Qy e Rxy)]

3.9.36 (�x)(�y)[Px e (Qy e Rxy)]

We can show the entailment using the rules of inference.

3.9.35 | 3.9.36

1. (�x)[Px C (�y)(Qy e Rxy)]

*2. -(�x)(�y)[Px e (Qy e Rxy)] AIP

*3. (�x)(�y)-[Px e (Qy e Rxy)] 2, QE

*4. (�x)(�y)-[-Px w -Qy w Rxy] 3, Impl, Impl

*5. (�x)(�y)(Px C Qy C -Rxy) 4, DM, DN

*6. Pa C (�y)(Qy e Ray) 1, EI

*7. (�y)(Pa C Qy C -Ray) 5, UI

*8. Pa C Qb C -Rab 7, EI

*9. (�y)(Qy e Ray) 6, Com, Simp

*10. Qb e Rab 9, UI

*11. Qb 8, Com, Simp

*12. Rab 10, 11, MP

*13. -Rab 8, Com, Simp

*14. Rab C -Rab 12, 13, Conj

15. (�x)(�y)[Px e (Qy e Rxy)] 2-14, IP, DN

QED

To see that 3.9.36 -| 3.9.35, we can construct a counterexample in a universe with two-members

I’ll expand 3.9.36 in two steps, first removing the existential quantifier, then the universal.

3.9.36' (�y)[Pa e (Qy e Ray)] w (�y)[Pb e (Qy e Rby)]

3.9.36''       {[Pa e (Qa e Raa)] C [Pa e (Qb e Rab)]} w {[Pb e (Qa e Rba)] C [Pb e (Qb e Rbb)]}
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I’ll do the same for 3.9.35.

3.9.35' [Pa C (�y)(Qy e Ray)] w [Pb C (�y)(Qy e Rby)]

3.9.35'' [Pa C (Qa e Raa) C (Qb e Rab)] w [Pb C (Qa e Rba) C (Qb e Rbb)]

To form the counterexample, assign false to both ‘Pa’ and ‘Pb’.  Then, both disjuncts in 3.9.35''

are false, but all the conditionals in 3.9.36'' are (vacuously) true.

Here are some more entailments and non-entailments in metalogical form.  You could

demonstrate the entailments, using our system of inference, by considering a specific instance of each. 

You could prove the non-entailments by instantiating each one and constructing a counterexample, as I

did just above.

3.9.37 (�x)Fx w (�x)Gx  |  (�x)(Fx w Gx)

3.9.38 (�x)(Fx w Gx)  -|  (�x)Fx w (�x)Gx

To see 3.9.38, just substitute ‘P’ for F and ‘-P’ for G.

3.9.39 (�x)(Fx C Gx)  |  (�x)Fx C (�x)Gx

3.9.40 (�x)Fx C (�x)Gx  -|  (�x)(Fx C Gx)

3.9.41 (�x)(Fx e á)  |  (�x)Fx e á

3.9.42 (�x)Fx e á  -|  (�x)(Fx e á)

3.9.43 (�x)Fx e á  |  (�x)(Fx e á) e.g. (�x)Px e (�y)Qy  |  (�x)[Px e (�y)Qy]

3.9.44 (�x)(Fx e á)  -|  (�x)Fx e á e.g. (�x)[Px e (�y)Qy]  -|  (�x)Px e (�y)Qy  
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Exercises 3.9a.  Using the rules of passage, transform each formula with a quantifier having narrow

scope into one with that quantifier having wide scope.

1. (�x)(Ax C -Bx) w (�x)(Cx w Dx)

2. (�x)Fx e (�x)Gx

3. (�x)[Hx C (�y)(Iy C Jxy)]

4. (�x)Px e Ra

5. (�x)[Kx C (�y)(Ly e Mxy)]

6. (�x)Jx e (�y)Ky

7. (�x)(Px C Qx) e (Pa C Ra)

8. (�x)[Nx w (�y)(Oy C Pxy)]

9. (�x)(Ex e Fx) C (�x)(-Fx / Gx)

10. (�x)[Qx w (�y)(Ry e Sxy)]

11. (�x)[(�y)Dxy e Ex]

12. (�x)[Tx e (�y)(Uy C Vxy)]

13. (�x)[Ax e (�y)(By e Cxy)]

14. (�x)[(�y)Rxy e (Px C Qx)]

Exercises 3.9b.  Using the rules of passage, transform each formula with a quantifier having wide scope

into one with that quantifier having narrow scope.

1. (�x)[Rx C (Tx w Sx)]

2. (�x)(�y)[(Kx / Lx) C (My C Nxy)]

3. (�x)(�y)[(Dx C Ex) w (Fy e Gxy)]

4. (�x)(�y)[Hx e (Iy C Jxy)]

5. (�x)[(Ox w Qx) e (�y)Py]

6. (�x)(�y)[Axy e (Bx w Cx)]

7. (�x)(�y)[(Ax w -Cx) e (By e Dxy)]

8. (�x)(�y)[(Fx C Gx) C (Hy e Exy)]

9. (�x)(�y)[Ixy e (Jx C Kx)]

10. (�x)[(Lx / Mx) w Nx]

11. (�x)[(Px C -Qx) e (�y)Oy]

12. (�x)(�y)[Sx e (Ty C Rxy)]

Exercises 3.9c.  Translate each of the following sentences into predicate logic.

1. Some math majors take a statistics class and a differential equations class. (Dx, Mx, Sx, Txy: x takes y)

2. Some tigers and all cheetahs are faster than all lions. (Cx, Lx, Tx, Fxy: x is faster than y)

3. All ballet dancers buy tights from some store. (Bx, Sx, Tx, Bxyz: x buys y from z)

4. Some people read all books written by some one. (Bx, Px, Rxy: x reads y, Wxy: x writes y)

5. Honest lawyers are always defeated by dishonest lawyers. (Hx, Lx, Dxy: x defeats y)

6. Some people drive from an office to a home. (Hx, Ox, Px, Dxyz: x drives from y to z)

7. Some people do not drive from an office to a home.
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8. Some people drive from a home to an office.

9. No one drives from an office to a home.

10. All sprinters are faster than all cross country runners. (Cx, Sx, Fxy: x is faster than y,)

11. Some robbers steal jewels from the elderly. (Ex, Jx, Rx, Sxyz: x steals y from z)

12. No robber steals jewels from the elderly.

13. Some kind people rescue dogs from some abuse. (Ax, Dx, Kx, Px, Rxyz: x rescues y from z)

14. Some evil burglars kidnap innocent children from homes. (Bx, Cx, Ex, Hx, Ix, Kxyz: x kidnaps y

from z)

15. Joel drinks water from a sink. (j, Wx, Sx, Dxyz: x drinks y from z)

16. Some thirsty people drink water from sinks. (Px, Tx, Wx, Sx, Dxyz: x drinks y from z)

17. Aaron eats chocolate from a floor. (a, Cx, Fx, Oxy: x is on y, Exy: x eats y)

18. Some young boys eat chocolate from a floor. (Bx, Cx, Fx, Yx, Oxy: x is on y, Exy: x eats y)

19. All people eat vegetables grown by farmers. (Fx, Px, Vx, Exy: x eats y, Gxy: x grows y) 

20. All intelligent students read books written by a professor. (Bx, Ix, Px, Sx, Rxy: x reads y, Wxy: x

writes y)

21. Some sweaty people swim in cool lakes. (Cx, Lx, Px, Sx, Sxy: x swims in y) 

22. Some rich college students buy expensive textbooks from a bookstore. (Bx, Cx, Ex, Rx, Sx, Tx, Bxyz:

x buys y from z)

23. Some impudent girls take warm clothing from their older sisters. (Cx, Gx, Ix, Wx, Oxy: x is older

than y, Sxy: x is a sister of y, Txyz: x takes y from z)

24. No impudent girls take clothing from their younger sisters. (Cx, Gx, Ix, Wx, Oxy: x is older than y,

Sxy: x is a sister of y, Txyz: x takes y from z)

25. Some wasteful doctors perform unnecessary tests on all gullible clients. (Cx, Dx, Gx, Tx, Ux, Wx,

Pxyz: x performs y on z)

26. All carnivorous animals hunt for food. (Ax, Cx, Fx, Hxy: x hunts y)

27. Some men with facial hair get shaved by a town barber. (Bx, Mx, Fx, Tx, Sxy: x shaves y)

28. No men with facial hair get shaved by a town barber. 

29. A town barber shaves himself.
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30. A town barber shaves everyone in town.

31. A barber in town shaves all men in town who do not shave themselves.

Exercises 3.9d.  The rules of passage do not include transformations for the biconditional.  Determine the

relations among 3.9.45 - 3.9.48.

3.9.45 (�x)(á / Fx)

3.9.46 á / (�x)Fx

3.9.47 (�x)(á / Fx)

3.9.48 á / (�x)Fx
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§3.10: Derivations in F

In §3.8, I motivated extending our language M  to a language F by introducing relational

predicates to regiment argument 3.8.1.

3.8.1 Andrew is taller than Bob. 

Bob is taller than Charles. 

For any x, y and z, If x is taller than y and y is taller than z, then x is taller than z.

So, Andrew is taller than Charles.

1. Tab

2. Tbc

3. (�x)(�y)(�z)[(Txy C Tyz) e Txz] / Tac

To derive the conclusion, we use the same rules of inference we used with M .  When

instantiating, we remove quantifiers one at a time, taking care to make appropriate instantiations to

variables or constants.  We will need to make only one small adjustment to the rule UG, which I will note

shortly.

3.10.1 1. Tab

2. Tbc

3. (�x)(�y)(�z)[(Txy C Tyz) e Txz] / Tac

4. (�y)(�z)[(Tay C Tyz) e Taz] 3, UI

5. (�z)[(Tab C Tbz) e Taz] 4, UI

6. (Tab C Tbc) e Tac 5, UI

7. (Tab C Tbc) 1, 2, Conj

8. Tac 6, 7, MP

QED

Sometimes, as in 3.10.1, we start our derivations by removing all quantifiers.  Sometimes we

remove the quantifiers in the middle of the proof, rather than at the beginning, as in 3.10.2.

3.10.2 1. (�x)[Hx C (�y)(Hy e Lyx)] / (�x)(Hx C Lxx)

2. Ha C (�y)(Hy e Lya) 1, EI

3. Ha 2, Simp

4. (�y)(Hy e Lya) C Ha 2, Com

5. (�y)(Hy e Lya) 4, Simp

6. Ha e Laa 5, UI

7. Laa 6, 3, MP

8. Ha C Laa 3, 7, Conj

9. (�x)(Hx C Lxx) 8, EG

QED

The Restriction on UG

All of our rules for removing and replacing quantifers work in F just as they did in M , with only

exception.  Consider the problematic 3.10.3, beginning with a proposition that can be interpreted as

‘Everything loves something’.
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3.10.3 1. (�x)(�y)Lxy

2. (�y)Lxy 1, UI

3. Lxa 2, EI

4. (�x)Lxa 3, UG: but wrong!

5. (�y)(�x)Lxy 4, EG

Given our interpretation of line 1, line 5 reads, ‘There’s something that everything loves’.  It does

not follow from the proposition that everything loves something that there is one thing that everything

loves.  Imagine we ordered all the things in a circle, and everyone loved just the thing to its left.  Line 1

would be true, but line 5 would be false.  We should not be able to derive step 5 from step 1.

We can locate the problem in step 4 of 3.10.3.  In line 2 we universally instantiated to some

random object x.  So ‘x’ could have stood for any object.  It retains its universal character, even without a

universal quantifier to bind it, and so we are free to UG over x.

Then, in line 3, we existentially instantiated.  In existentially instantiating, we gave a name, ‘a’ to

the thing which bore relation L to it, to the thing x loves.  Once we gave a name to the thing that x loves,

x lost its universal character.  It could no longer be anything which loves something.  It now must be the

thing that loves a.  ‘x’ became as particular an object as ‘a’ is.  So, the generalization at line 4 must be

blocked.  In other words, variables lose their universal character if they are free when EI is used.

We formulate the resultant restriction on UG as 3.10.4.

3.10.4 You may never UG on a variable when there’s a constant present, and the

variable was free when the constant was introduced.

The restriction on UG debars line 4 of 3.10.3 because ‘x’ was free in line 3 when ‘a’ was

introduced.

3.10.5 contains an acceptable use of UG in F.

3.10.5 1. (�x)(�y)[(�z)Ayz e Ayx]

2. (�y)(�z)Ayz / (�x)(�y)Ayx

3. (�y)[(�z)Ayz e Aya] 1, EI

4. (�z)Ayz e Aya 3, UI

5. (�z)Ayz 2, UI

6. Aya 4, 5, MP

7. (�y)Aya 6, UG

8. (�x)(�y)Ayx 7, EG

QED

Note that at line 7, UG is acceptable because ‘y’ was not free when ‘a’ was introduced in line3. 

The restriction 3.10.4 only applies to UG.  All other rules are just as they are in monadic predicate logic.

Accidental binding

When using UG or EG, watch for illicit accidental binding.  3.10.6 contain an instance of

accidental binding.

3.10.6 (Pa C Qa) e (Fx w Gx)

(�x)[(Px C Qx) e (Fx w Gx)] EG
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The first proposition already contains two instances of the variable ‘x’.  If you try to quantify

over the ‘a’ using EG with the variable ‘x’, you bind the latter two singular terms.  That is a legitimate use

of existential generalization.  As long as the variable ‘x’ was not free when the constant ‘a’ was

introduced it retains its universal character.  Since it is universal, anything said of ‘x’ holds of everything,

so it will hold of the object ‘a’.  But the resulting claim may not mean what you want.  It is more likely

that the desired inference is 3.10.7.

3.10.7 (Pa C Qa) e (Fx w Gx)

(�y)[(Py C Qy) e (Fx w Gx)]

In 3.10.7, the latter singular terms, the ‘x’s, remain free.  We can still bind them with either a

universal quantifier or an existential quantifier, later, as in either of the propositions at 3.10.8.

3.10.8 (�x)(�y)[(Py C Qy) e (Fx w Gx)]

(�x)(�y)[(Py C Qy) e (Fx w Gx)]

3.10.9 is a conditional proof using relational predicates.  3.10.10 is a more-complex derivation.

3.10.9 1. (�x)[Ax e (�y)Bxy]

2. (�x)[Ax e (�y)Dyx] / (�x)[Ax e (�y)(Bxy C Dyx)]

*3. Ax ACP

*4. Ax e (�y)By 1, UI

*5. Ax e (�y)Dyx 2, UI

*6. (�y)Bxy 4, 3, MP

*7. (�y)Dyx 5, 3 MP

*8. Dax 7, EI

*9. Bxa 6, UI

*10. Bxa C Dax 9, 8, Conj

*11. (�y)(Bxy C Dyx) 10, EG

12. Ax e (�y)(Bxy C Dyx) 3-11, CP

13. (�x)[Ax e (�y)(Bxy C Dyx)] 12, UG

QED



Marcus, What Follows, page 171

3.10.10 1. (�x)(Wx e Xx)

2. (�x)[(Yx C Xx) e Zx]

3. (�x)(�y)(Yy C Ayx)

4. (�x)(�y)[(Ayx C Zy) e Zx] /(�x)[(�y)(Ayx e Wy) e Zx]

*5. (�y)(Ayx e Wy) ACP

*6. (�y)(Yy C Ayx) 3, UI

*7. Ya C Aax 6, EI

*8. Aax e Wa 5, UI

*9. Aax C Ya 7, Com

*10. Aax 9, Simp

*11. Wa 8,10, MP

*12. Wa e Xa 1, UI

*13. Xa 12, 11, MP

*14. Ya 7, Simp

*15. Ya C Xa 14, 13, Conj

*16. (Ya C Xa) e Za 2, UI

*17. Za 16, 15, MP

*18. (�y)[(Ayx C Zy) e Zx] 4, UI

*19. (Aax C Za) e Zx 18, UI

*20. Aax C Za 10, 11, Conj

*21. Zx 19, 20, MP

22. (�y)(Ayx e Wy) e Zx 5-21, CP

23. (�x)[(�y)(Ayx e Wy) e Zx] 22, UG

QED

Notice that at line 17, you might be tempted to discharge your assumption and finish your CP. 

But, you wouldn’t be able to UG over the ‘Za’.  We have to UI at line 18, retaining a variable for the

predicate ‘Z’.

Logical truths

We can use CP and IP to prove logical truths in F.  Here are four logical truths of F.

3.10.11 (�y)[(�x)Fx e Fy]

3.10.12 (�y)[Fy e (�x)Fx]

3.10.13 (�y)[Fy e (�x)Fx]

3.10.14 (�y)[(�x)Fx e Fy]

Note that each one has a similarity to one of the four rules for removing or replacing quantifiers. 

We can also prove them meta-theoretically, by considering interpretations, in the way that we proved

RP10 in §9.  3.10.15 contains a derivation of 3.10.11.  I leave derivations of the other three for Exercises

3.10c.
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3.10.15 *1. -(�y)[(�x)Fx e Fy] AIP

*2. (�y)-[(�x)Fx e Fy] 1, QE

*3. (�y)-[-(�x)Fx w Fy] 2, Impl

*4. (�y)[--(�x)Fx C -Fy] 3, DM

*5. (�y)[(�x)Fx C -Fy] 4, DN

*6. (�x)Fx C -Fa 3, DM

*7. (�x)Fx 6, Simp

*8. Fa 7, UI

*9. -Fa C (�x)Fx 6, Com

*10. -Fa 9, Simp

*11. Fa C -Fa 8, 10, Conj

12. (�y)[(�x)Fx e Fy] 1-8, IP

QED

Exercises 3.10a.  Derive the conclusions of each of the following arguments.

1. 1. (�x)[(�y)Bxy e (Ax w Cx)]

2. (�z)(-Az C -Cz) / (�z)(�y)-Bzy

2. 1. (�x)[Qx w (�y)(Ry C Pxy)]

2. -(�x)(Sx w Qx) / (�z)(�y)(Ry C Pzy)

3. 1. (�x)[(�y)Uxy e (Tx C Vx)]

2. -(�x)Tx / (�z)-Uza

4. 1. (�x)[Mx C (�y)(Ny C Lxy)]

2. (�x)(�y)(Lxy e (�z)Oyz) / (�x)(�y)Oxy

5. 1. Aa C (Ba C -Cab)

2. (�y)Cay w (�z)Dbz / (�y)(�z)Dyz

6. 1. (�x)[Ex C (Fx w Gx)]

2. (�x){Hx C (�y)[(Fy w Gy) e Ixy]} / (�y)(�x)Ixy

7. 1. (�x)[(Fx C Hx) e (�y)(Gy C Ixy)]

2. (�x)[Jx C (�y)(Gy e -Ixy)] / -(�z)(Fz C Hz)

8. 1. (�x)[Ex e (�y)(Fy C Gxy)]

2. (�x)(Ex C Hxb) / (�x)(�y)(Gxy C Hxy)

9. 1. (�x)[Ux e (�y)(Ty C Vxy)]

2. (�x)Vax e (�x)Vax

3. Ua / (�x)(�y)Vxy

10. 1. (�x)(�y)[Ax e (Dy e Byx)]

2. (�x)(�y)[Dx C (Bxy e Cy)] / (�x)Ax e (�y)Cy
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11. 1. (�x)[Ax e (�y)(Cy C Dxy)}

2. (�x)(�y)(Dxy e By) / (�x)Ax e (�y)(By C Cy)

12. 1. (�x){Px C (�y)[Oy e (�z)(Rz e Qxyz)]}

2. (�x)[Px / (Ox C Rx)] / (�x)Qxxx

13. 1. (�x)(Mx e -Ox) e (�y)Ny

2. (�y)[Ny e (�z)(Pz C Qyz)]

3. -(�x)(Mx C Ox) / (�x)[Nx C (�y)Qxy]

14. 1. (�x)(�y)[Kx e (My e Lxy)]

2. (�x)(�y)[Mx C (Ky C Nxy)] / (�y)(�x)(Lxy C Nyx)

15. 1. (�x)[Rx e (�y)(Ty e Uxy)]

2. (�y)[(�x)(Uxy e Sy)] / (�x)[(Rx C Tx) e (�y)Sy]

16. 1. (�x)(�y)[(Fx C Dx) w (Ey e Gxy)]

2. (�x)[(�y)Gxy e (�z)Hxz]

3. -(�x)Fx C (�z)Ez / (�y)(�z)Hyz

17. 1. (�x)(Kx / Lx) C (�x)Jx

2. (�x)[Jx e (�y)(-Ky C Mxy)] / (�x)(-Lx C Mxx)

18. 1. (�x)[Kx e (�y)(Jy C Ixy)]

2. (�x)(�y)(Ixy e Lx) / (�x)(-Kx w Lx)

19. 1. (�x)[(Ox e Nx) e (�y)(Qy C -Rxy)]

2. (�y)(�x)(Pxy e Rxy) / (�x)[(Nx w -Ox) e (�y)-(Qy e Pxy)]

20. 1. (�x)[(Fx / Hx) 

2. (�x)(Hx e -Ix)

3. (�x)[Fx C (�y)(Iy C -Gxy)] / (�x)[(Fx C -Ix) C (�y)(Iy C -Gxy)]

21. 1. (�x){Ax e (�y)[By C (�z)(-Cz C Dzxy)]}

2. -(�x)(Ax e Cx) / (�x)(�y)Dxxy

22. 1. (�x)[(Bx e Ax) e (�y)(Cy C Dxy)]

2. (�x)[(�y)-Dxy w Ex]

3. (�x)Ex e -(�x)-Cx / (�x)Bx

23. 1. (�x){(Tx e -Sx) e (�y)[Uy w (�z)(Vz e Wxyz)]}

2. -(�x)(Tx / Sx)

3. -(�x)(Vx e Ux) / (�x)(�y)Wxyy

24. 1. (�x)[Fx e (�y)(Hy C Gxy)]

2. (�x)[Hx e (�y)(Ey C Gxy)]

3. (�x)[Ex e (�y)Fy] / (�x)Fx / (�x)Ex
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25. 1. (�x){Jx e (�y)[My e (�z)(Lz e Kxyz)]}

2. (�x)(�y)[Mx C (Jy C Nxy)]

3. -(�x)(Lx e Ox) / (�x){Mx C (�y)[Nxy C (�z)(-Oz C Kyxz)]})

26. 1. (�x)[Tx e (�y)(Vy e Uxy)]

2. -(�x)(Tx C Sx)

3. Ta C Vb / (�x)[-Sx C (�y)Uxy]

Exercises 3.10b.  Translate and derive.

1. There are penguins in an ocean. Some fish swim faster than no penguins. So, some fish does not swim

faster than something. (Fx, Px, Ox, Ixy: x is in y, Sxy: x swims faster than y)

2. Some ballet dancers are shorter than some gymnasts. No gymnasts are clumsy. So, it is not the case that

all things are clumsy. (Bx, Gx, Cx, Sxy: x is shorter than y)

3. Anyone who teaches a math class is intelligent.  Professor Rosen is a person who teaches Calculus I. 

Calculus I is a math class.  So, Professor Rosen is intelligent.  (c, r, Px, Ix, Mx, Txy: x teaches y)

4. All cats love all dogs. It is not the case that everything loves Brendan, and all things are cats. So, it is

not the case that everything is a dog. (Cx, Dx, b, Lxy: x loves y)

5. All cheetahs are faster than some tigers. Everything is striped if, and only if, it is a tiger. So, if some

things are cheetahs, then some things have stripes. (Cx, Tx, Sx, Fxy: x is faster than y)

6. Alice buys a baguette from some store. Baguettes are food.  Alice lives in Clinton.  So, some residents

of Clinton buy some food from some store.  (a, c, Bx, Fx, Sx, Lxy: x lives in y, Bxyz: x buys y from z)

7. All philosophers have some mentor to whom they respond.  Either something isn’t a philosopher or

nothing is a mentor.  So, not everything is a philosopher. (Mx, Px, Rxy: x responds to y)

8. Some students read books written by professors.  All books written by professors are well-researched. 

So, some professor wrote a well-researched book. (Bx, Px, Sx, Wx, Rxy: x reads y, Wxy: x wrote y)

9. Sunflowers and roses are plants.  Some sunflowers grow taller than all roses.  Russell gave a rose to

Emily.  So, some plant is taller than some rose. (e, r, Px, Rx, Sx, Gxy: x grows taller than y, Gxyz: x gives

y to z)

10. Something is either expensive if and only if it is of good quality or it is trendy. Some things are

meaningful and serve a purpose. All meaningful things are expensive.  Nothing is of good quality.  So,

some trendy things serve a purpose. (Ex, Qx, Tx, Mx, Px)
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Exercises 3.10c.  Derive the following logical truths of F.

1. Derive 3.10.12: (�y)[Fy e (�x)Fx]

2. Derive 3.10.13: (�y)[Fy e (�x)Fx]

3. Derive 3.10.14: (�y)[(�x)Fx e Fy]

4. (�x)(�y)Cxy e (�y)(�x)Cxy

5. (�x)(�y)Hxy e (�x)(�y)Hxy

6. Fa w [(�x)Fx e Ga]

7. (�x)Ix w (�x)(Ix e Jx)

8. [(�x)Dx w (�x)Ex] e (�x)(Dx w Ex)

9. [(�x)Ax e Ba] / (�x)(Ax e Ba)

10. (�x)(Ka C Lx) / [Ka C (�x)Lx]
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§3.11: The Identity Predicate: Translation

In this section and the next, we will explore an extension to the system of inference we have

adopted for our language F.  This extension concerns a special two-place relation, identity.  In translation,

identity allows us to use F to regiment a wide range of concepts including some fundamental

mathematical concepts.  In the next section, we will add some simple rules governing identity which will

allow us to make some powerful inferences.

There is some debate about whether identity is strictly a logical relation.  I start by explaining that

debate, and then proceed, in the remainder of this section, to show how to use identity in translation.

Some claims, like 3.11.1, are paradigmatically logical.

3.11.1 If  P then P P e P

Other claims, like 3.11.2, are paradigmatically non-logical.

3.11.2 It snows in winter in Quebec.

Other claims fall somewhere in between.  3.11.3 is generally not considered a logical truth, even

though it has something of the feel of a logical truth.

3.11.3 All bachelors are unmarried.

Philosophers generally characterize the truth of 3.11.3 as semantic, rather than logical.  It follows

from the meaning of the term ‘bachelor’ that all bachelors are unmarried.  But, that’s generally considered

a semantic, not a logical, entailment.  The line between logical claims and non-logical claims is not

always clear, though.  Entailments surrounding identity, like the inference at 3.11.4, are generally

considered logical.

3.11.4 1. Superman can fly.

2. Superman is Clark Kent.

So, Clark Kent can fly.

Identity, as expressed in the second premise of 3.11.4, is a relation among individuals.  We could

write it ‘Isc’.  Thus, we could regiment 3.11.4 as 3.11.5.

3.11.5 1. Fs

2. Isc / Fc

The conclusion of 3.11.5 does not follow from the premises in the system of deduction we have

adopted with F.  But philosophers have observed that identity has special logical properties which

facilitate inferences like 3.11.5.  Thus, we ordinarily give identity its own symbol, ‘=’.

Identity sentences, like those at 3.11.6, thus look a little different from other dyadic relations.

3.11.6 Clark Kent is Superman c=s

Mary Ann Evans is George Eliot m=g

We do not extended our language F by introducing the identity predicate.  We only set aside a

particular two-place predicate, adding a new shorthand for it.  We do not need any new formation rules,

though we should clarify how the shorthand works.  In particular, formulas like ‘a=b’ are really short for
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‘Iab’, though we insist that ‘Ixy’ is interpreted as the identity relation.  Since we do not put brackets

around ‘Iab’, we should not put brackets around ‘a=b’ either.  As far as the logical language is concerned,

identities are just special kinds of two-place relations.

Negations of identity claims, strictly speaking, are written just like the negations of any other

two-place relation, with a tilde in front.  Negation applies to the identity predicate, and not to the objects

related by that predicate.  Since we are using a special symbol for the identity relation, we sometimes

write them in shorthand.  Both ways of writing negations are displayed at 3.11.7.

3.11.7 -a=b

a�b

While the identity predicate needs no new syntactical rules, we will introduce new derivation

rules governing the predicate.  Technically, we are introducing a new deductive system which uses the

same language F.  There three new rules governing the identity predicate.

For any singular terms á and â: 

IDr (reflexivity) á=á

IDs (symmetry) á=â  W  â=á

IDi (indiscernibility of identicals) öá 

á=â / öâ

IDr says that any singular term stands for an object which is identical to itself.  We can add, in

any proof, a statement of that form.  IDs says that identity is commutative.  IDi is the most useful of the

three identity rules.  Consider again Superman and Clark Kent.  We know that the two people are the

same, so anything true of one, is true of the other.  This property is called Leibniz’s law, or the

indiscernibility of identicals.  IDi says that if you have á=â, then, you may rewrite any formula containing

á with â in the place of á throughout.

Be careful not to confuse two related claims.  The indiscernibility of identicals, written as a single

schematic sentence at 3.11.8, says that two identical objects share all their properties.  This claim is not

contentious.  It might be better cast as: if two terms refer to the same object, then whatever we predicate

of the one term can just as easily be predicated of the other.  The related but different claim is Leibniz’s

identity of indiscernibles, written at 3.11.9.  This less-plausible claim, which relies on the Principle of

Sufficient Reason, says that no two things share all properties.

3.11.8 (�x)(�y)[x=y e (öx / öy)] indiscernibility of identicals

3.11.9 (�x)(�y)[(öx / öy) e x=y] identity of indiscernibles

I will discuss the special inferential properties of the identity predicate in the next section.  In this

section, I focus on translation.  The identity predicate allows us to reveal inferential structure for a wide

variety of propositions, making it extraordinarily powerful.

To start, note that, as a convention, for the rest of the chapter, I will drop the requirement on wffs

that series of conjunctions and series of disjunctions have brackets for every two conjuncts or disjuncts. 

Propositions using identity can become long and complex.  To reduce the number of brackets in our

formulas, given that commutativity and association hold of both conjunction and disjunction, we allow

such series, even if they have many terms, to be collected with one set of brackets.
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Thus, 3.11.10 can be written as 3.11.11 and 3.11.12 can be written as 3.11.13

3.11.10 (�x)(�y){(Ax C Bxj) C [(Ay C Iyj) C x�y)]}

3.11.11 (�x)(�y)(Ax C Bxj C Ay C Iyj C x�y)

3.11.12 (�x)(�y)(�z)(�w){[(Px C Py) C (Pz C Pw)] e {[(x=y w x=z) w (x=w w y=z)] w

(y=w w z=w)}}

3.11.13 (�x)(�y)(�z)(�w)[(Px C Py C Pz C Pw) e (x=y w x=z w x=w w y=z w y=w w

z=w)]

As we have seen, simple identity claims are easily written, as in 3.11.6.  Ordinarily, we think of

such claims as holding between two names of a single object.

Statements using terms like‘except’ and ‘only’ can be regimented usefully.  To say that John only

loves Mary, we add to the claim that John loves Mary (at 3.11.14) the claim that anyone John loves must

be identical to Mary, as at 3.11.15.  To say that only John loves, Mary, we add the claim that anyone who

loves Mary must be identical to John.

3.11.14 John loves Mary Ljm

3.11.15 John only loves Mary Ljm C (�x)(Ljx e x=m)

3.11.16 Only John loves Mary Ljm C (�x)(Lxm e x=j)

3.11.17 contains more model translations using ‘only’.

3.11.17 Nietzsche respects only Spinoza

Rns C (�x)(Rnx e x=s)

Only Nietzsche doesn’t like Nietzsche.

-Lnn C (�x)(-Lxn e x=n)

Only Locke plays billiards with some rationalist who is read more widely than

Descartes.

(�x){(Rx C Pxl) C (�y)[(Ry C Myd) e y=l]}

Only Kant is read more widely than Descartes and Hume.

Mkd C Mkh C (�x)[(Mxd w Mxh) e x=k]

Sentences with ‘except’ are usually universal claims.  We merely add a clause to the antecedent

of the conditional which is the main operator in the scope of the univeral quantifier, omitting the desired

exception.  In 3.11.18, we are saying that John doesn’t love Mary, but every other person does.

3.11.18 Everyone except John loves Mary -Ljm C (�x)[(Px C x�j) e Lxm]

Ordinarily, when we use ‘except, not only do we exempt one individual from a universal claim,

we also deny that whatever we are ascribing to everyone else holds of the exemption.  These denials can

be seen in the beginnings of the ‘except’ sentences at 3.11.19.  Notice that some uses of ‘but’ work just

like ordinary uses of ‘except’.
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3.11.19 Every philosopher except Berkeley respects Locke

Pb C -Rbl C (�x)[(Px C x�b) e Rxl]

Nietzsche does not respect any philosopher except Spinoza.

Ps C Rns C (�x)[(Px C x�s) e -Rnx]

Some philosopher likes all philosophers except Plato and Aristotle.

Pp C Pa C (�x){Px C (�y)[(Py C y�p C y�a) e Lxy]}

Every philosopher but Socrates wrote a book.

Ps C -(�x)(Bx C Wtx) C (�x)[(Px C x�t) e (�y)(By C Wxy)]

Relational predicates allowed us to express comparisons: larger than, smaller than, older than,

more funny than.  The identity predicate allows us to express superlatives.  To move from a comparison

to a superlative, as at 3.11.20 where Bxy stands for ‘x is a better impressionist than y’, you add a

universal clause: better (or more profound or nicer) than anyone.  So far, we don’t need identity.  But if

you are nicer than anyone, then you are nicer than yourself, which is impossible.  So, we need identity to

rule out the single, reflexive case.

3.11.20 Degas is a better impressionist than Monet Id C Im C Bdm

Degas is the best impressionist Id C (�x)[(Ix C x�d) e Bdx]

3.11.21 has more superlatives.

3.11.21 Hume is the biggest philosopher.

Ph C (�x)[(Px C x�h) e Bhx]

Hume is not the most difficult empiricist to read.

Eh C -(�x)[(Ex C x�h) e Dxh]

The Ethics is the most difficult book by Spinoza to read.

Be C Wse C (�x)[(Bx C Wsx C x�e) e Dex]

Either The Critique of Pure Reason or The Ethics is the most difficult book to

read.

Bc C Be C (�x)[(Bx C x�c C x�e) e (Dcx w Dex)]

The last two uses of identity that I will discuss are especially philosophically interesting.  The

first concerns how much mathematics can be developed using just logic.  The latter concerns a puzzle in

the philosophy of language, often called the problem of empty reference.

Frege’s development of formal logic was intricately linked to his logicist project of trying to

show that mathematics is just logic in complex form.  Frege’s logicism, as he developed it, was a failure;

he used an inconsistent logic.  Subsequent logicist projects are forced to rely on substantial set-theoretic

principles that many philosophers believe are not strictly logical.  Normally, we extend logical systems to

mathematical ones by including one more element to the language, ‘0’, standing for set inclusion, and

axioms governing set theory.  Mathematics is uncontroversially reducible to logic plus set theory.

Some contemporary logicians continue to work on logicism; they are ordinarily known as neo-

logicists, or neo-Fregeans.  Part of the contemporary neo-logicist project is to see just how little set theory

we need to add to logic in order to develop mathematics.  It is edifying to see, then, how much
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mathematics can be generated by the logical machinery of just F, using the identity predicate.

For example, we can express many adjectival uses of numbers in F.  We have already seen how

to say that there is one of something, using ‘only’ as in 3.11.22.

3.11.22 There is only one aardvark. (�x)[Ax C (�y)(Ay e x=y)]

We could rephrase 3.11.22 as ‘there is exactly one aardvark’.  So, we have already seen how to

translate sentences including ‘exactly one’ clauses.  To regiment ‘exactly’ sentences for larger numbers,

to say that there are exactly n of some object, we combine at-least and at-most clauses.  Let’s start with

some at-least sentences, as at 3.11.23.  Notice that there is a natural procedure for translating ‘at least’ for

any number.  The identity predicate is used to make sure that each of the quantifiers refers to a distinct

individual.

3.11.23 There is at least one aardvark. (�x)Ax

There are at least two aardvarks. (�x)(�y)(Ax C Ay C x�y)

There are at least three aardvarks.

(�x)(�y)(�z)(Ax C Ay C Az C x�y C x�z C y�z)

There are at least four aardvarks.

(�x)(�y)(�z)(�w)(Ax C Ay C Az C Aw x�y C x�z C x�w C y�z C y�w C z�w)

The identity clauses at the end become increasingly long as the number we are expressing

increases, but the algorithm is simple: just make sure to include one clause for each pair of variables. 

3.11.24 contains more at-least sentences.

3.11.24 At least one materialist respects Berkeley. (�x)(Mx C Rxb)

At least two materialists respect Berkeley.

(�x)(�y)(Mx C Rxb C My C Ryb C x�y)

There are at least three materialists who respect Berkeley.

(�x)(�y)(�z)(Mx C Rxb C My C Ryb C Mz C Rzb C x�y C x�z C y�z )

At least two idealist philosophers respect each other.

(�x)(�y)(Ix C Px C Iy C Py C Rxy C Ryx C x�y)

At least three coherentists respect some book by Descartes.

(�x)(�y)(�z){Cx C Cy C Cz C (�w)[(Bw C Wdw) C Rxw] C (�w)[(Bw C

Wdw) C Ryw] C (�w)[(Bw C Wdw) C Rzw] C x�y C x�z � y�z}

At-most clauses use universal quantifiers.  The core idea is that to say that one has at most n of

something, we say that if we think we have one more than n of it, there must be some redundancy. 

3.11.25 There is at most one aardvark. (�x)(�y)[(Ax C Ay) e x=y]

There are at most two aardvarks.

(�x)(�y)(�z)[(Ax C Ay C Az) e (x=y w x=z w y=z)]
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There are at most three aardvarks.

(�x)(�y)(�z)(�w)[(Ax C Ay C Az C Aw) e (x=y w x=z w x=w w y=z w

y=w w z=w)]

As with at-least sentences, we have identity clauses at the end.  But for at-most sentences, the

identity clauses are affirmative and we disjoin them.  Again, make sure to have one clause for each pair of

variables.

3.11.26 Nietzsche respects at most one philosopher.

(�x)(�y)[(Px C Rnx C Py C Rny) e x=y]

Nietzsche respects at most two philosophers.

(�x)(�y)(�z)[(Px C Rnx C Py C Rny C Pz C Rnz) e (x=y w x=z w y=z)]

Kant likes at most two empiricists better than Hume.

(�x)(�y)(�z)[(Ex C Lkxh C Ey C Lkyh C Ez C Lkzh) e (x=y w x=z w y=z)]

At most one idealist plays billiards with some rationalist.

(�x)(�y){Ix C (�z)(Rz C Pxz) C Iy C (�z)(Rz C Pyz)] e x=y}

At most two rationalists wrote a book more widely read than every book written

by Hume.

(�x)(�y)(�z){{Rx C (�w)[Bw C Wxw C (�z)(Bz C Whz) e Mwz] C Ry C

(�w)[Bw C Wyw C (�z)(Bz C Whz) e Mwz] C Rz C (�w)[Bw C

Wzw C (�z)(Bz C Whz) e Mwz]} e (x=y w x=z w y=z)}

To express ‘exactly, we combine the at-least and at-most clauses.  3.11.22 says that there is

exactly one aardvark.  The first portion says that there is at least one.  The second portion, starting with

the universal quantifier, expresses the redundancy which follows from supposing that there are two

aardvarks.  We still need n+1 quantifiers in an ‘exactly’ sentence, but the first n quantifiers are existential;

we need only one further universal quantifier.  The identity clauses at the end of the at-most section only

hold between the variable bound by the universal quantifier and the other variables, not among the

existentially-bound variables.

3.11.27 There are exactly two aardvarks.

(�x)(�y){Ax C Ay C x�y C (�z)[Az e (z=x w z=y)]}

There are exactly three aardvarks.

(�x)(�y)(�z){Ax C Ay C Az C x�y C x�z C y�z C (�w)[Aw e (w=x w w=y

w w=z)]}

There are exactly four aardvarks.

(�x)(�y)(�z)(�w){Ax C Ay C Az C Aw C x�y C x�z C x�w C y�z C y�w C

z�w C (�v)[Av e (v=x w v=y w v=z w v=w)]}

These numerical sentences get very long very quickly.  Indeed, F can not express ‘exactly five’ or

more, since we have run out of quantifiers.  To abbreviate numerical sentences, logicians sometimes

introduce special shorthand quantifiers like the ones at 3.11.28.
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3.11.28 (�1x), (�2x), (�3x)...

Sometimes the quantifiers at 3.11.28 are taken to indicate that there are at least the number

indicated.  To indicate exactly a number, ‘!’ is sometimes used.  For exactly one thing, people sometimes

write ‘(�!x)’.  For more things, we can insert the number and the ‘!’, as at 3.11.29.

3.11.29 (�1!x), (�2!x), (�3!x)...

These abbreviations are useful for translation.  But once we want to make inferences using the

numbers, we have to unpack their longer forms.  We will not extend our language F to include more

variables, or to include numerals or ‘!’, but it is easy enough to do so.  3.11.30 contains further ‘exactly’

translations.

3.11.30 There are exactly two chipmunks in the yard.

(�x)(�y){Cx C Yx C Cy C Yy C x�y C (�z)[(Cz C Yz) e (z=x w z=y)]}

There is exactly one even prime number.

(�x){(Ex C Px C Nx) C (�y)[(Ey C Py C Ny) e y=x]}

There are exactly three aardvarks on the log.

(�x)(�y)(�z){Ax C Lx C Ay C Ly C Az C Lz C x�y C C x�z C y�z C

(�w)[(Aw C Lw) e (w=x w w=y w w=z]}

Our last use of the identity predicate is in a solution to a problem in the philosophy of language. 

The problem can be seen in trying to interpret 3.11.31.

3.11.31 The king of America is bald.

We might regiment 3.11.27 as 3.11.28.

3.11.32 Bk

3.11.32 is false, since there is no king of America.  Given our bivalent semantics, 3.11.33 should

be true since it is the negation of a false statement.

3.11.33 -Bk

3.11.33 seems to be a perfectly reasonable regimentation of 3.11.34.

3.11.34 The king of America is not bald.

3.11.34 has the same grammatical form as 3.11.35.

3.11.35 Devendra Banhart is not bald.

3.11.35 entails that Devendra Banhart has hair.  So, 3.11.34 may reasonably be taken to imply

that the king of America has hair.  But, we don’t want to make that inference.

In fact, we want both 3.11.32 and 3.11.33 to be false.  But, the conjunction of their negations is

the contradiction 3.11.36. 
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3.11.36 -Bk C --Bk

We had better regiment 3.11.31 and 3.11.34 differently.

Bertrand Russell, facing just this problem, focused on the fact that ‘the king of America’ is a

definite description which refers to no real thing.  There are two ways to refer to an object.  We can use

the name of the object, or we can describe it (e.g. the person who..., the thing that...).  Definite

descriptions refer to specific objects without using names.

Both 3.11.31 and 3.11.34 use definite descriptions to refer to an object.  They are both false due

to a false presupposition in the description.  Russell claims that definite descriptions are disguised

complex propositions.  He urges us to unpack them to reveal their true logical form.  According to

Russell, 3.11.31, properly understood, consists of three simpler expressions.

3.11.31A There is a king of America. (�x)Kx

3.11.31B There is only one king of America. (�y)(Ky e y=x)

3.11.31C That thing is bald. Bx

Putting them together, so that every term is within the scope of the original existential quantifier,

we get 3.11.37, which Russell claims is the proper analysis of 3.11.31.

3.11.37 (�x)[Kx C (�y)(Ky e y=x) C Bx]

3.11.31 is false because clause A is false.  3.11.34 is also false, for the same reason, which we can

see in its proper regimentation, 3.11.38.

3.11.38 (�x)[Kx C (�y)(Ky e y=x) C -Bx]

The tilde in 3.1.38 only affects the third clause.  The first clause is the same in 3.11.37 and

3.11.38, and still false.  Further, when we conjoin 3.11.37 and 3.11.38, we do not get a contradiction, as

we did in 3.11.36.

3.11.39 (�x)[Kx C (�y)(Ky e y=x) C Bx] C (�x)[Kx C (�y)(Ky e y=x) C -Bx]

3.11.39 is no more problematic than 3.11.40.

3.11.40 Some things are purple, and some things are not purple.

(�x)Px C (�x)-Px

One might worry that 3.11.37 and 3.11.38 are still problematic, since their uniqueness clauses

seem to make it the case that we are talking about the same thing both having the property of baldness

and lacking that property.  Let’s see why this is not so.

First, note that the problem arises only because we want to assert the negations of 3.11.31 and

3.11.34, and the simple regimentation leads to the contradiction at 3.11.36.  If we were to assert both

3.11.37 and 3.11.38, instead of their negations, we would be able to derive a contradiction.  But, the

contradiction would be present in both 3.11.31 and 3.11.34, too.  It is no error in a logic if it derives a

contradiction from contradictory statements!  So, let’s look at the negations of the 3.11.37 and 3.11.38.

3.11.37' -(�x)[Kx C (�y)(Ky e y=x) C Bx]

3.11.38' -(�x)[Kx C (�y)(Ky e y=x) C -Bx]
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Now, let’s unpack 3.11.37 and 3.11.38, and see if we can get to a contradiction between them. 

I’ll exchange quantifers, so we have universals, and bring the tildes inside.  3.11.41 starts with 3.11.37'

and 3.11.42 starts with 3.11.38'.

3.11.41 -(�x)[Kx C (�y)(Ky e y=x) C Bx] 3.11.37' 

(�x)-[Kx C (�y)(Ky e y=x) C Bx] QE

(�x)[-Kx w -(�y)(Ky e y=x) w -Bx] DM

(�x)[-Kx w (�y)-(Ky e y=x) w -Bx] QE

(�x)[-Kx w (�y)-(-Ky w y=x) w -Bx] Impl

(�x)[-Kx w (�y)(--Ky C -y=x) w -Bx] DM

(�x)[-Kx w (�y)(Ky C -y=x) w -Bx] DN

3.11.42 -(�x)[Kx C (�y)(Ky e y=x) C -Bx] 3.11.38'

(�x)-[Kx C (�y)(Ky e y=x) C -Bx] QE

(�x)[-Kx w -(�y)(Ky e y=x) w Bx] DM, DN

(�x)[-Kx w (�y)-(Ky e y=x) w Bx] QE

(�x)[-Kx w (�y)-(-Ky w y=x) w Bx] Impl

(�x)[-Kx w (�y)(Ky C -y=x) w Bx] DM, DN

The conjunction of the last formulas in 3.11.41 and 3.11.42 will not lead to contradiction, even if we

instantiate both to the same constant and combine them.

3.11.43 -Ka w (�y)(Ky C -y=a) w -Ba 3.11.41, UI

-Ka w (�y)(Ky C -y=a) w Ba 3.11.42, UI

{-Ka w (�y)(Ky C -y=a) w -Ba} C {-Ka w (�y)(Ky C -y=a) w -Ba} Conj

-Ka w (�y)(Ky C -y=a) w (Ba C -Ba) Dist

Thus, by asserting both 3.11.37' and 3.11.38', we are asserting only either that there is no king of

America, or that there is more than one king of America, or that some thing is both bald and not bald.

Let’s put away the problem of empty reference for definite descriptions and see how Russell’s

analysis guides translation generally.  We regiment sentences of the form of 3.11.44 as sentences like

3.11.45.  3.11.46 uses Russell’s original example.

3.11.44 The country called a sub-continent is India.

3.11.44A There is a country called a sub-continent.

3.11.44B There is only one such country.

3.11.44C That country is identical with India.

3.11.45 (�x){(Cx C Sx) C (�y)[(Cy C Sy) e y=x] C x=i}

3.11.46 The author of Waverly was a genius.

(�x){Wx C (�y)[Wy e y=x] C Gx}
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Exercises 3.11.  Translate into first-order logic, using the identity predicate where applicable.

1. Andre is the busiest student in Logic. (a, l, Sx, Bxy: x is busier than y, Ixy: x is in y)

2. Carlos invites everyone except Belinda. (b, c, Px, Ixy: x invites y)

3. There are at least two speakers at the conference. (Sx)

4. There exactly two speakers at the conference.

5. There is exactly one male honors student. (Hx, Mx, Sx)

6. There are exactly two male honors students.

7. The valedictorian is Diego. (d, Vx) 

8. At most one person who attends Riverdale High goes to Harvard. (h, r, Px, Axy: x attends y, Gxy: x

goes to y)

9. At most two people who attend Riverdale High go to Harvard.

10. At most three people who attend Riverdale High go to Harvard.

11. Only Carla trains dogs. (c, Dx, Txy: x trains y) 

12. Carla only trains dogs.

13. There are at least two newspapers in Jamal’s Newsstand. (j, Nx, Ixy: x is in y)

14. There are exactly two newspapers in Jamal’s Newsstand. 

15. There are exactly three newspapers in Jamal’s Newsstand.

16. There are at most two children in Marie’s Toy Store. (m, Cx, Ixy: x is in y)

17. There are exactly two children in Marie’s Toy Store.

18. Marie’s is the biggest store in San Sebastian. (m, s, Sx, Bxy: x is bigger than y, Ixy: x is in y)

19. Of the stores in town, only Gianni’s sells ice cream. (g, Ix, Sx, Sxy: x sells y)

20. Everyone except Emilia shops at Gianni’s. (e, g, Px, Sxy: x shops at y)

21. The owner of Gianni’s is rich. (g, Rx, Oxy: x owns y)

22. There are at least three workers stronger than Fernando. (f, Wx, Sxy: x is stronger than y)

23. The best worker is Fernando. (f, Wx, Bxy: x is a better worker than y)
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24. Geraldo is the strongest worker in Canada. (c, g, Wx, Ixy: x is in y, Sxy: x is stronger than y)

25. Only Geraldo lifts heavy things. (g, Hx, Lxy: x lifts y)

26. Everyone except Hector likes Geraldo. (g, h, Px, Lxy: x likes y)

27. At least two workers earn more than Igor. (i, Wx, Exy: x earns more than y)

28. Exactly two workers earn more than Igor. 

29. The state called the Big Apple is New York. (n, Ax, Sx)

30. At most two students are from New York. (n, Sx, Fxy: x is from y)

31. At most one New Yorker has an apartment bigger than an apartment of mine. (m, Ax, Nx, Bxy: x is

bigger than y, Hxy: x has y)

32. At most two New Yorkers have an apartment bigger than mine. 

33. The Empire State Building is taller than the Chrysler Building.  (c, e, Txy: x is taller than y)

34. The Empire State Building is the tallest building in New York City. (e, n, Bx, Ixy: x is in y, Txy: x is

taller than y)

35. Everyone except Katalin has been to New York. (k, n, Px, Hxy: x has been to y)

36. Everyone except Katalin and Alice have been to New York. (a, k, n, Px, Hxy: x has been to y)

37. There are at least two people shorter than Louisa. (l, Px, Sxy: x is shorter than y)

38. There are at least three people shorter than Louisa.

39. There is exactly one talented singer in Potsdam . (p, Sx, Tx, Ixy: x is in y)

40. The lead singer is famous. (Fx, Lx)

41. The Departed is the only film for which Scorsese won an Academy Award (d, s, Ax, Fx, Wxyz: x

won y for z)

42. Exactly one talented singer wins American Idol. (a, Sx, Tx, Wxy: x wins y)

43. Everyone except Lara watches American Idol. (a, l, Px, Wxy: x watches y)

44. At least three squirrels eat blueberries. (Bx, Sx, Exy: x eats y)

45. At most two squirrels are in a tree. (Sx, Tx, Ixy: x is in y)

46. The Queen of England is British. (Bx, Qx)
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47. Queen Elizabeth is the most powerful woman in Britain. (b, e, Wx, Ixy; x is in y, Pxy: x is more

powerful than y)

48. Queen Elizabeth has exactly two sons. (e, Sxy: x is the son of y)

49. There is at most one queen in England. (e, Qx, Ixy: x is in y)

50. There is one and only one captain on a ship. (Cx, Sx, Oxy: x is on y)

51. The Titanic is the biggest ship. (t, Sx, Bxy: x is bigger than y)

52. There are at least two logicians who read a paper written by Tarski. (l, t, Px, Sx, Ixy: x is in y, Rxy: x

reads y; Wxy: x wrote y)

53. Every student in Logic reads a paper written by Tarski except Mario. (l, m, t, Px, Sx, Ixy: x is in y,

Rxy: x reads y; Wxy: x wrote y)

54. Only Nicola and Rick received a higher grade than Juan. (j, n, r, Gx, Hxy: x is higher than y, Rxy: x

received y)

55. Every biology major except Petra takes Chemistry 240. (c, p, Bx, Txy: x takes y)

56. There are at least two science majors in Poetry 101. (p, Sx, Ixy: x is in y)

57. There are at least three science majors in Poetry 101.

58. There are at most three psychology majors in Psych 210. (p, Px, Ixy: x is in y)

59. Sandra is the professor who has the biggest class. (s, Cx, Px, Bxy: x is bigger than y, Hxy: x has y)

60. There are exactly two professors who teach Logic. (l, Px, Txy: x teaches y)
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§3.12: The Identity Predicate: Derivations

We saw that there are three rules governing the identity predicate.  For any singular terms, á and

â: 

IDr (reflexivity) á=á

IDs (symmetry) á=â  W  â=á

IDi (indiscernibility of identicals) öá 

á=â / öâ

IDr is an axiom schema.  While we are not generally using an axiomatic system of inference, it is

traditional to allow IDr as an axiom.  We can add an instance of the axiom schema into any proof, with no

line justification.  IDs is a rule of equivalence.  We can use IDs on whole lines or on parts of lines.  IDi is

a rule of inference.  With IDi, we always re-write a whole line, switching one constant for another.

Let’s see some examples of how to use these rules.  I’ll start with 3.11.4, the inference with which

I motivated identity theory.

3.11.4 Superman can fly.

Superman is Clark Kent. So, Clark Kent can fly.

To derive the conclusion, we need only a simple application of IDi.

3.12.1 1. Fs

2. s=c / Fc

3. Fc 1, 2, IDi

QED

3.12.2 uses IDs and IDi.

3.12.2 1. a=b e j=k

2. b=a

3. Fj / Fk

4. a=b 2, IDs

5. j=k 1, 4, MP

6. Fk 3, 5, IDi

QED

To derive the negation of an identity statement, one often uses IP as in 3.12.3.

3.12.3 1. Rm

2. -Rj / m�j

*3. m=j AIP

*4. Rj 1, 3, IDi

*5. Rj C -Rj 4, 2, Conj

6. m�j 3-5, IP

QED

3.12.4 uses the reflexivity rule to set up a use of MP.
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3.12.4 1. (�x)(-Gx e x�d) / Gd

*2. -Gd AIP

*3. -Gd e d�d 1, UI

*4. d=d IDr

*5. d�d 3, 2, MP

*6. d=d C d�d 4, 5, Conj

7. Gd 2-6, CP

QED

Identity statements, recall, are just two-place relations.  We can EG over variables in identity

statements, as in 3.12.5.  Notice the use of IDs at line 5; it works like commutativity for singular terms.

3.12.5 1. Rab

2. (�x)-Rxb / (�x)-x=a

3. -Rcb 2, EI

*4. c=a AIP

*5. a=c 4, IDs

*6. Rcb 1, 5, IDi

*7. Rcb C -Rcb 6, 3, Conj

8. -c=a 4-7, IP

9. (�x)-x=a 8, EG

QED

The derivations 3.12.1 - 3.12.5 have been quick.  But, many simple arguments using identity

require long derivations.  The argument 3.12.6 is valid.  It may seem a little odd, since it derives a

universal conclusion from an existential premise.  But remember that a definite description is definite;

there is only one thing that fits the description.  The universality of the conclusion is supported by the

uniqueness clause in the definite description.  The premise entails that there is only one Joyce scholar at

Hamilton College.  Anything we say of a Joyce scholar at Hamilton holds of all Joyce scholars at

Hamilton (viz. only the one).

3.12.6 The Joyce scholar at Hamilton College is erudite.  Therefore, all Joyce scholars at

Hamilton College are erudite.

(�x){Jx C Hx C (�y)[(Jy C Hy) e x=y] C Ex} / (�x)[(Jx C Hx) e Ex]

As I noted in §3.11, by convention we may drop brackets from series of conjunctions or

disjunctions.  Given our convention about dropping brackets among series of conjunctions and series of

disjunctions, we should add corresponding conventions governing inferences.

If a wff is just a series of conjunctions, you may use Simp to infer, immediately, any of the

conjuncts, including multiple conjuncts.

If a wff is just a series of disjunctions, and you have the negation of one of the disjuncts on a

separate line, you may eliminate it, using DS, from the series.

You may use Conj to conjoin any number of propositions appearing on separate lines into a

single proposition in a single step.

In the proof of 3.12.7, I avail myself of the first of these conventions at lines 9, 11, 13 and 15.
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3.12.7 1. (�x){Jx C Hx C (�y)[(Jy C Hy) e x=y] C Ex} / (�x)[(Jx C Hx) e Ex]

*2. -(�x)[(Jx C Hx) e Ex] AIP

*3. (�x)-[(Jx C Hx) e Ex] 2, QE

*4. -[(Ja C Ha) e Ea] 3, EI

*5. -[-(Ja C Ha) w Ea] 4, Impl

*6. --(Ja C Ha) C -Ea 5, DM

*7. Ja C Ha C -Ea 6, DN

*8. Jb C Hb C (�y)[(Jy C Hy) e b=y] C Eb 1, EI (to b)

*9. (�y)[(Jy C Hy) e b=y] 8, Simp

*10. (Ja C Ha) e b=a 9, UI (to a)

*11. Ja C Ha 7, Simp

*12. b=a 10, 11, MP

*13. Eb 8, Simp

*14. Ea 13, 12, IDi

*15. -Ea 7, Simp

*16. Ea C -Ea 14, 15, Conj

17. (�x)[(Jx C Hx) e Ex] 2-16, IP

QED

3.12.8 contains another substantial proof.  At 3.12.9, I show how you can shorten the proof using

the rules of passage.

3.12.8 There is at least one moon of Earth.

There is at most one moon of Earth. / So, there is exactly one moon of Earth.

1. (�x)Mx

2. (�x)(�y)[(Mx C My) e x=y] / (�x)[Mx C (�y)(My e x=y)]

3. Ma 1, EI

*4. -(�x)[Mx C (�y)(My e x=y)] AIP

*5. (�x)-[Mx C (�y)(My e x=y)] 4, QE

*6. (�x)[-Mx w -(�y)(My e x=y)] 5, DM

*7. -Ma w -(�y)(My e a=y) 6, UI

*8. --Ma 3, DN

*9. -(�y)(My e a=y) 7, 8, DS

*10. (�y) -(My e a=y) 9, QE

*11. -(Mb e a=b) 10, EI

*12. -(-Mb w a=b) 11, Impl

*13. --Mb C -a=b 12, DM

*14. Mb C -a=b 13, DN

*15. Mb 14, Simp

*16. -a=b 14, Simp

*17. (�y)[(Ma C My) e a=y] 2, UI

*18. (Ma C Mb) e a=b 17, UI

*19. Ma C Mb 3, 15, Conj

*20. a=b 18, 19, MP

*21. a=b C -a=b 20, 16, Conj

22. --(�x)[Mx C (�y)(My e x=y)] 4-21, IP

23. (�x)[Mx C (�y)(My e x=y)] 22, DN

QED
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3.12.9 1. (�x)Mx

2. (�x)(�y)[(Mx C My) e x=y] / (�x)[Mx C (�y)(My e x=y)]

3. (�x)(�y)[Mx e (My e x=y)] 1, Exp

4. (�x)[Mx e (�y)(My e x=y)] RP8

5. Ma 1, EI

6. Ma e (�y)(My e a=y)] 3, UI

7. (�y)(My e a=y)] 6, 5, MP

8. Ma C (�y)(My e a=y)] 5, 7, Conj

9. (�x)[Mx C (�y)(My e x=y)] 8, EG

QED

3.12.10 has an even longer derivation.  Notice that my use of our new conventions (especially at

lines 27, 33, and 40) does not keep the proof short!
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3.12.10 There are at least two cars in the driveway.

All the cars in the driveway belong to John.

John has at most two cars. / So, there are exactly two cars in the driveway.

1. (�x)(�y)(Cx C Dx C Cy C Dy C x�y)

2. (�x)[(Cx C Dx) e Bxj]

3. (�x)(�y)(�z)[(Cx C Bxj C Cy C Byj C Cz C Bzj) e (x=y w x=z w y=z)]

/ (�x)(�y){Cx C Dx C Cy C Dy C x�y C (�z)[(Cz C Dz) e (z=x w z=y)]

4. (�y)(Ca C Da C Cy C Dy C a�y)     1, EI

5. Ca C Da C Cb C Db C a�b 4, EI

6. Ca C Da 5, Simp

7. (Ca C Da) e Baj 2, UI

8. Baj 7, 6, MP

9. Cb C Db 5, Simp

10. (Cb C Db) e Bbj 2, UI

11. Bbj 10, 9, MP

12. a �b 5, Simp

*13. -(�z)[(Cz C Dz) e (z=a w z=b)] AIP

*14. (�z)-[(Cz C Dz) e (z=a w z=b)] 13, QE

*15. (�z)-[-(Cz C Dz) w (z=a w z=b)] 14, Impl

*16. (�z)[--(Cz C Dz) C -(z=a w z=b)] 15, DM

*17. (�z)[(Cz C Dz) C -(z=a w z=b)] 16, DN

*18. Cc C Dc C -(c=a w c=b) 17, EI

*19. Ca 6, Simp

*20. Ca C Baj 19, 8 Conj

*21. Cb 9, Simp

*22. Cb C Bbj 21, 11, Conj

*23. Cc C Dc 18, Simp

*24. (Cc C Dc) e Bcj 2, UI

*25. Bcj 24, 23, MP

*26. Cc 23, Simp

*27. Cc C Bcj 26, 25, Conj

*28. Ca C Baj C Cb C Bbj C Cc C Bcj 20, 22, 27, Conj

*29. (�y)(�z)[(Ca C Baj C Cy C Byj C Cz C Bzj) e (a=y w x=z w y=z)] 3, UI

*30. (�z)[(Ca C Baj C Cb C Bbj C Cz C Bzj) e (a=b w a=z w b=z)] 29, UI

*31. (Ca C Baj C Cb C Bbj C Cc C Bcj) e (a=b w a=c w b=c) 30, UI

*32. a=b w a=c w b=c 31, 28, MP

*33. a�b 5, Simp

*34. a=c w b=c 32, 33, DS

*35. -(c=a w c=b) 18, Simp

*36. -(c=a w b=c) 35, IDs

*37. -(a=c w b=c) 36, IDs

*38. (a=c w b=c) C -(a=c w b=c) 34, 37, Conj

39. --(�z) (Cz C Dz) e (z=a w z=b)] 13-38, IP

40. (�z)[(Cz C Dz) e (z=a w z=b)] 39, DN

41. Ca C Da C Cb C Db C a�b C (�z)[(Cz C Dz) e (z=a w z=b)] 6, 9, 12, 40,Conj

42. (�y){Ca C Da C Cy C Dy C a�y C (�z)[(Cz C Dz) e (z=a w z=y)]} 41, EG

43. (�x)(�y){Cx C Dx C Cy C Dy C x�y C (�z)[(Cz C Dz) e (z=x w z=y)]} 42, EG

QED
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Exercises 3.12a.  Derive the conclusions of each of the following arguments.

1. 1. Dkm C (�x)(Dkx e x=m)

2. Dab

3. Fb C -Fm / a�k

2. 1. (�x)(�y)[(Fx C Fy) e x=y]

2. (�x)(�y)x�y / Fa e -Fb

3. 1. (�x)[(�y)Pxy e (�z)Pzx]

2. (�x)(Pxb C x=d) / (�z)Pzd

4. 1. (�x)[Jx w (Kx C Lx)]

2. -(Ja w Kb) / a�b

5. 1. (�x)[(Mx w Nx) e Ox]

2. -Oc

3. Md / c�d

6. 1. (�x)(Qx e Sx)

2. (�x)(Rx e Tx)

3. (�x)[Qx w (Rx C Ux)]

4. a=b / Sb w Ta

7. 1. Fac C Fbc C (�x)[Fxc e (x=a w x=b)]

2. (�x)(Fxc C x�a)

3. Fb C Gb / Fd C Gd

8. 1. (�x)(�y)[Ax e (By e Cxy)]

2. Aa C Ba

3. a=b / Cab

9. 1. (�x)(Mx C Px)

2. (�x)[Mx e (�y)(Ky e x=y)]

3. Kf / Mf C Pf

10. 1. (�x)[Ax w (Bx C Cx)]

2. -(�x)Bx

3. (�x)(Ax e x=c) / (�x)x=c

11. 1. Dp C (�x)(Ex C -Fxp)

2. (�x)[Gx e (�y)Fyx] / (�x)(Gx C -Dx)

12. 1. Ha C Ia C (�x)[(Hx C Ix) e x=a]

2. Hb C Jb C (�x)[(Hx C Jx) e x=b]

3. Ka C -Kb  /-(�x)(Hx C Ix C Jx)
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13. 1. (�x)(�y)(Lx C Ly C x�y)

2. (�x)(�y)(�z)[(Lx C Ly C Lz) e (x=y w y=z w x=z)]

3. La C Lb / (�x)[Lx e (x=a w x=b)]

14. 1. (�x)(Ecx e x=d)

2. (�x){(Fx C Gx) e (�y)[(Fy C Gy) e y=x]}

3. (�x)(Fx C Gx C Ecx)

4. Fa C Ga / a=d

15. 1. (�x)(�y)(Hx C Ix C Jx C Hy C Iy C Jy C x�y)

2. (�x)(�y)[(Hx C Ix C Jx C Hy C Iy C Jy) e x=y]

/ (�x)(�y){Hx C Ix C Jx C Hy C Iy C Jy C x�y C (�z)[(Hz C Iz C Jz) e (z=x w z=y)]}

16. 1. Na C Oa C Nb C Ob C a�b C (�x)[(Nx C Ox) e (x=a w x=b)]

2. Na C -Pa C (�x)[(Nx C x�a) e Px] / (�x){Nx C Ox C Px C (�y)[(Ny C Oy C Py) e y=x]}

17. 1. (�x)(�y)(Kx C Lx C Ky C Ly C x�y)

2. Ka C La C Ma C (�y)[(Ky C Ly C My) e y=a]

/ (�x)(Kx C Lx C -Mx)

18. 1. (�x)(�y)(Ax C Cx C Ay C Cy C x�y)

2. (�x)(�y)(�z)[(Cx C Cy C Cz) e (x=y w x=z w y=z)]

3. (�x)(Bx C -Ax) / -(�x)(Bx e Cx)

19. 1. (�x)(�y)(Qx C Rx C Qy C Ry C x�y)

2. (�x)(�y)(�z)[(Rx C Sx C Ry C Sy C Rz C Sz) e (x=y w x=z w y=z)]

3. (�x)(-Qx w Sx)

/ (�x)(�y){Qx C Rx C Sx C Qy C Ry C Sy C x�y C (�z)[(Rz C Sz) e (z=x w z=y)]}

20. 1. Ma C -Pa C Mb C -Pb C (�x)[(Mx C x�a C x�b) e Px]

2. Qb C (�x)[(Mx C Qx) e x=b]

3. (�x){Mx e [-(Qx w Px) / Rx]}

4. a�b / (�x){Mx C Rx C (�y)[(My C Ry) e y=x]}
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Exercises 3.12b.  Translate and derive.

1. Polly flies. Olivia doesn’t. So, Polly is not Olivia. (o, p, Fx)

2. If George is Dr. Martin, then Dr. Martin is married to Mrs. Wilson.  Dr. Martin is George.  Mrs. Wilson

is Hilda.  So, George is married to Hilda. (g, h, m, w, Mxy: x is married to y)

3. If something is a not superhero, then everything is not Wonder Woman. So, Wonder Woman is a

superhero. (w, Sx)

4. Katerina is the fastest runner on the team. Pedro is a runner on the team. Katerina is not Pedro. So,

Katerina is faster than Pedro. (k, p, Rx, Tx, Fxy: x is faster than y)

5. Ryan is the only professor who teaches Metaphysics at the college. All engaging professors win an

award. All professors at the college are engaging. So, Ryan wins an award. (m, r, Cx, Ex, Px, Wx, Txy: x

teaches y)

6. The author of Republic was a Greek philosopher. John Locke was a philosopher, but he was not Greek.

Therefore, John Locke did not write Republic. (l, r, Gx, Px, Wxy: x wrote y)

7. The only person who went skiing was James. The only person who caught a cold was Mr. Brown.

Some person who went skiing also caught a cold. So, James is Mr. Brown. (j, b, Cx, Px, Sx)

8. Every student except Paco writes a thesis. Every student except Ricardo gives a presentation. Paco is

not Ricardo. So, Paco gives a presentation and Ricardo writes a thesis. (p, r, Gx, Sx, Wx)

 

9. Exactly one student in the class gives a presentation about Spinoza.  At least two students in the class

give a presentation about Leibniz.  No student in the class gives a presentation about both Leibniz and

Spinoza.  So, there are at least three students in the class. (l, s, Sx, Gxy: x gives a presentation about y)

10. Every employee except Rupert got a promotion. The only employee to get a promotion was Jane.  So,

there are exactly two employees. (Ex: x is an employee, r: Rupert, Px: x gets a promotion, j: Jane)
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§3.13: Functions

In the last two sections of this chapter, we will look at two final, formal topics: functions and

higher-order quantification.  These two extensions of logic are contentious, and many philosophers do not

consider them to be logical at all.  But, their introduction facilitates inferences which appear to be logical.

Consider, as a motivating example to introduce functions, the intuitively-valid argument 3.13.1.

3.13.1 All applicants will get a job.

Jean is an applicant.

Jean is the first child of Dominique and Henri.

So, some first child will get a job.

The first two premises are easily regimented into F.

3.13.2 1. (�x)(Ax e Gx)

2. Aj

We have several options for the third premise.  We could take ‘first child of Dominique and

Henri’ as a monadic predicate, as at 3.13.3. 

3.13.3 3. Fj

Then we would need a different predicate for being the first child (of any couple) for the

conclusion. Alternatively, we could regiment the third premise by using Russell’s theory of definite

descriptions, using ‘Fxyz’ for ‘x is a first child of y and z’, and adding a uniqueness clause.

3.13.4 3.  (�x)[Fxdh C (�y)(Fydh e y=x) C x=j]

3.13.4 has the advantage of taking ‘first child of’ to be a three-place relation.  That option reveals

more logical structure than 3.13.3, and so may be useful.  Correspondingly, we can regiment the

conclusion of 3.13.1 as 3.13.5.

3.13.5 (�x){(�y)(�z)[Fxyz C (�w)(Fwyz e w=x)] C Gx}

The conclusion 3.13.5 follows from the premises at 3.13.2 and 3.13.4, as we can see at 3.13.6.
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3.13.6 1. (�x)(Ax e Gx)

2. Aj

3.  (�x)[Fxdh C (�y)(Fydh e y=x) C x=j]

/ (�x){(�y)(�z)[Fxyz C (�w)(Fwyz e w=x)] C Gx}

4. Fadh C (�y)(Fydh e y=a) C a=j 3, EI

5. a=j 4, Simp

6. j=a 5, IDs

7. Aa 2, 6, IDi

8. Aa e Ga 1, UI

9. Ga 8, 7, MP

10. (�y)(Fydh e y=a) 4, Simp

11. Fwdh e w=a 10, UI

12. (�w)(Fwdh e w=a) 11, UG

13. Fadh 4, Simp

14. Fadh C (�w)(Fwdh e w=a) 13, 12, Conj

15. (�z)[Fadz C (�w)(Fwdz e w=a)] 14, EG

16. (�y)(�z)[Fayz C (�w)(Fwyz e w=a)] 15, EG

17. (�y)(�z)[Fayz C (�w)(Fwyz e w=a)] C Ga 16, 9, Conj

18. (�x){(�y)(�z)[Fxyz C (�w)(Fwyz e w=x)] C Gx} 17, EG

QED

The derivation at 3.13.6 is successful, but there is a more efficient, and more fecund, option for

regimenting ‘the first child of x and y’.  We can take ‘the first child of x and y’ to be a function.  This

option will allow us to regiment both the third premise and the conclusion more simply.  It will also allow

us to construct simpler derivations.

We have seen that we can, using the identity predicate, simulate adjectival uses of numbers.  With

a small extension of F, adding functors like ‘f(x)’, we can express even more mathematics.  A functor is a

symbol used to represent a function, like any of the functions ubiquitous in and essential for mathematics

and science.  In mathematics, there are linear function, exponential functions, periodic functions,

quadratic functions, and trigonometric functions.  In science, force is a function of mass and acceleration,

momentum is a function of mass and velocity, even genetic code is a function.

The utility of functions to mathematics makes them suspect as logic.  But understanding functions

is essential for work in metalogic.  Recall that the semantics for PL is presented in terms of truth

functions.  All the connectives are truth functions, taking one argument (negation) or two arguments (the

rest of the connectives) and yielding a specific truth value.

Consider terms like ‘the father of’, ‘the successor of’, ‘the sum of’, and ‘the adviser of’.  Each

takes one or more arguments, from their domain, and produces a single output, the range.  (A student

might have more than one adviser, but let’s imagine not, for the moment.)  One-place functions take one

argument, two-place functions take two arguments, n-place functions take n arguments.

3.13.7 lists some functions and their logical representations.

3.13.7 the father of:  f(x)

the successor of: g(x)

the sum of: f(x,y)

1 nthe teacher of: g(x ...x )

The last function can take as arguments, say, all the students in a class.

An essential characteristic of functions is that they yield exactly one value, no matter how many

arguments they take.  Thus, the expressions at 3.13.8 are not functions.
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3.13.8 the parents of a

the classes that a and b share

the square root of x

These expressions are relations; a function is a special type of relation.  By adding functors to our

language F, we have adopted a new language, which I call FF, for Full First-Order Predicate logic with

functors.

Vocabulary of FF

Capital letters A...Z, used as predicates

Lower case letters

a, b, c, d, e, i, j, k...u are used as constants.

f, g, and h are used as functors.

v, w, x, y, z are used as variables.

Five connectives: -, C, w, e /

Quantifiers: �, �

Punctuation: (), [], {}

In order to specify the formation rules for FF, we have to invoke n-tuples of singular terms.  An

n-tuple of singular terms is an ordered series of singular terms (constants, variables, or functor terms).

N-tuples differ from sets in that the order of their arguments matters.  ‘N-tuple’ is a general term that

covers ‘single’, ‘double’, ‘triple’, ‘quadruple’, etc.  We use that term since functions can take any number

of arguments.  Often, an n-tuple is represented thus: <a, b, c>.  We will represent n-tuples merely by

listing the singular terms separated by commas, as at 3.13.9.

3.13.9 a,b two arguments

a,a,f(a) three arguments

x,y,b,d,f(x),f(a,b,f(x)) six arguments

a one argument

Suppose á is an n-tuple of singular terms.  Then the expressions at 3.13.10 are all functor terms.

3.13.10 f(á)

g(á)

h(á)

Note that an n-tuple of singular terms can include functor terms.  ‘Functor term’ is defined

recursively, which allows for composition of functions.  For example, one can refer to the grandfather of

x, using just the functions for father, e.g. f(x), and mother, e.g. g(x).

3.13.11 f(f(x)) 

3.13.12 f(g(x))

3.13.11 represents ‘paternal grandfather’ and 3.13.12 represents ‘maternal grandfather’. 

Similarly, if we take ‘h(x)’ to represent the square of x, 3.13.13 represents the eighth power of x, i.e.

((x ) ) .2 2 2

3.13.13 h(h(h(x)))
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I have introduced only three functor letters.  As with variables and constants, there are several

different tricks for constructing an indefinite number of terms out of a finite vocabulary, using indexing. 

We won’t need more than the three letters.  Even with just the three letters, we have an indefinite number

of functors, since each of 3.13.14 is technically a different functor, and can represent a different function.

3.13.14 f(a)

f(a,b)

f(a,b,c)

f(a,b,c,d)

etc.

The scope and binding rules are the same for FF as they were for M  and F.  The formation rules

only need one small adjustment, at the first line.

Formation rules for wffs of FF.

1. An n-place predicate followed by n singular terms (constants, variables, or functor terms) is a

wff.

2. For any variable â, if á is a wff that does not contain either ‘(�â)’ or ‘(�â)’, then ‘(�â)á’ and

‘(�â)á’ are wffs.

3. If á is a wff, so is -á.

4. If á and â are wffs, then so are:

(á C â)

(á w â)

(á e â)

(á / â)

5. These are the only ways to make wffs.

The semantics for FF are basically the same as for F.  For an interpretation of FF, we insert an

interpretation of function symbols.

Specifying a semantics for FF

Step 1. Specify a set to serve as a domain of interpretation, or domain of quantification.

Step 2. Assign a member of the domain to each constant.

Step 3. Assign a function with arguments and ranges in the domain to each function symbol.

Step 4. Assign some set of objects in the domain to each one-place predicate; assign sets of

ordered n-tuples to each relational predicate

Step 5. Use the customary truth tables for the interpretation of the connectives.

The function assigned in Step 3 will be a function in the metalanguage used to interpret the

function in the object language.  I won’t pursue a discussion of metalinguistic functions, except to say that

they work just like ordinary mathematical functions.  Once you have the idea of how functions work in

the object language, it will become clear how they work in the metalanguage.
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 Following Mendelson 1997.4

Translations into FF and simple arithmetic functions

At 3.13.15, there is a translation key and some sentences of FF.

3.13.15 Lxy: x loves y

f(x): the father of x

g(x): the mother of x

o: Olaf

Olaf loves his mother. Log(o)

Olaf loves his grandmothers. Log(g(o)) C Log(f(o))

Noone is his/her own mother. (�x)-x=g(x)

Many simple concepts in arithmetic are functions: addition, multiplication, least common

multiple.  The most fundamental function in mathematics is the successor function.  All other

mathematical functions can be defined in terms of successor and other basic concepts.  In fact, all of

arithmetic can be developed from five basic axioms, called the Peano axioms.  They are named for

Giuseppe Peano, who published in 1889 a precise version of the axioms that Richard Dedekind had

published a year earlier.  Peano had credited Dedekind, and sometimes these axioms are called the

Dedekind-Peano, or even the Dedekind, axioms.

3.13.16 Peano’s Axioms for Arithmetic4

P1: 0 is a number

P2: The successor (x') of every number (x) is a number

P3: 0 is not the successor of any number

P4: If x'=y' then x=y

P5: If P is a property that may (or may not) hold for any number, and if

i. 0 has P; and

ii. for any x, if x has P then x' has P;

then all numbers have P.

P5 is called the induction schema, and is actually a schema of an infinite number of axioms. 

Mathematical induction is essential in advanced logic, as well as in linear algebra and number theory. We

can write the Peano axioms in FF if we use the given key.

a: zero

Nx: x is a number

f(x): the successor of x

P1. Na

P2. (�x)(Nx e Nf(x))

P3. -(�x)(Nx C f(x)=a)

P4. (�x)(�y)[(Nx C Ny) e (f(x)=f(y) e x=y)]

P5. {Pa C (�x)[(Nx C Px) e Pf(x)]} e (�x)(Nx e Px)
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 3.13.17 - 3.13.19 present a few translations of arithmetic sentences using functions.  Note that in

the following sentences, I take ‘number’ to mean ‘natural number’, and use the following translation key.

o: one

f(x): the successor of x

f(x, y): the product of x and y

Ex: x is even

Ox: x is odd

Px: x is prime

3.13.17 One is not the successor of any number.

(�x)(Nx e -f(x)=o)

3.13.18 If the product of a pair of numbers is odd, then the product of the successors of

those numbers is even.

(�x)(�y){(Nx C Ny) e [Of(x, y) e Ef(f(x), f(y))]}

3.13.19 There are no prime numbers such that their product is prime.

-(�x)(�y)[Nx C Px C Ny C Py C Pf(x, y)]

Derivations using functions

There are no new rules covering functions, which act like simple singular terms.  Since a function

always stands for a single element from the domain, no matter how many arguments it takes, we can

consider a function as if it were either a constant or a variable.  Whether we should treat a function as a

constant or a variable for the purposes of instantiating or generalizing depends both on the arguments of

the function and the particular rule.  As always, UI and EG are free of restrictions.  Since a universal

claim is true of everything, it is true of both simple singular terms and complex singular terms.  We can

UI to a variable, or to a function of a variable, or to any complex function all of whose arguments are

variables.  

The inferences at 3.13.20 are all acceptable using UI.

3.13.20 (�x)(Px e Qx)

-----------------

Pa e Qa
Px e Qx
Pf(x) e Qf(x)
Pf(a) e Qf(a)
Pf(f(g(f(a)))) e Qf(f(g(f(a))))
Pf(f(g(f(x)))) e Qf(f(g(f(x))))

Similarly, since existentially quantified sentences are so weak, merely claiming that some object

in the domain has a property, we can EG at any point over any singular terms.  ‘(�x)(Px C Qx)’ can be

inferred from any of the statements listed at 3.13.21.

3.13.21 Pa C Qa

Pf(a) C Qf(a)

Pf(x) C Qf(x)

Pf(f(g(f(a)))) C Qf(f(g(f(a))))

Pf(f(g(f(x)))) C Qf(f(g(f(x))))
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Moreover, all of the inferences at 3.13.22 are acceptable using EG.

3.13.22 Pf(f(g(f(a)))) C Qf(f(g(f(a))))

------------------------------------------

(�x)[Pf(f(g(f(a)))) C Qf(f(g(f(a))))]

(�x)[Pf(f(g(x))) C Qf(f(g(x)))]

(�x)[Pf(f(x)) C Qf(f(x))]

(�x)[Pf(x) C Qf(x)]

The examples at 3.13.20 - 3.13.22 extend naturally to functions of more than one argument.

Using UG with functions requires some care.  Consider the faulty derivation at 3.13.23.

3.13.23 1. (�x)Pf(x) Premise

2. Pf(x) 1, UI

3. (�x)Px 2, UG: but wrong!

Uh-oh!

The problem with 3.13.23 is clear if we interpret ‘Px’ as ‘x is even’ and ‘f(x)’ as the doubling

function.  Then, we have concluded that all numbers are even from the premise that all doubles are even.  

Using EI with functions also requires care.  The following inference 3.13.24 is also fallacious.

3.13.24 1. (�x)Px Premise

2. Pf(a) 1, EI: but wrong!

Uh-oh!

Again, we can see the problem with 3.13.24 by interpreting the symbols of the inference.  Let’s

interpret ‘Px’ as ‘x is odd’ and ‘f(x)’ as the doubling function.  Then, 3.13.24 concludes that some double

is odd from the premise that some number is odd.

The solution to both faulty inferences 3.13.23 and 3.13.24 involves making sure that when you

use EI and UG, you leave the functors as they were.  Do not eliminate functors when using UG.  Do not

introduce functors when using EI.

For UG, if the arguments of a function are all variables, then you are free to use UG over the

variables in that function, though the earlier restrictions on UG continue to hold.  If the arguments of a

function contain any constants, then you may not use UG.

For EI, we must continue always to instantiate to a new singular term.  A functor is not a new

singular term if any of its arguments, or any of the arguments of any of its sub-functors, have already

appeared in the derivation or appear in the conclusion.

Let’s return to argument 3.13.1.  We saw at 3.13.6 that the conclusion follows if we regiment the

argument as the form 3.13.25.

3.13.25 1. (�x)(Ax e Gx)

2. Aj

3.  (�x)[Fxdh C (�y)(Fydh e y=x) C x=j]

/ (�x){(�y)(�z)[Fxyz C (�w)(Fwyz e w=x)] C Gx}

I also mentioned that invoking functions would make the derivation simpler.  Let’s use a function

‘f(x,y)’ for ‘the first child of x and y’ to regiment the third premise and conclusion.  The derivation

follows quickly.
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3.13.26 1. (�x)(Ax e Gx)

2. Aj

3. j=f(d,h) / (�x)(�y)Gf(x,y)

4. Aj e Gj 1, UI

5. Gj 4, 2, MP

6. Gf(d,h) 5, 3, IDi

7. (�y)Gf(d,y) 6, EG

8. (�x)(�y)Gf(x,y) 7, Eg

QED

3.13.27 contains a derivation which uses some composition of functions.  Note that ‘B’ is a two-

place predicate, taking as arguments a variable and a functor term with a variable argument in the first

premise, and taking as arguments two functor terms, each with variable arguments, in the conclusion.

3.13.27 1. (�x)[Ax e Bf(x)x]

2. (�x)Af(x) / (�x)Bf(x)f(f(x))

3. Af(a) 2, EI to ‘a’

4. Af(a) e Bf(a)f(f(a)) 1, UI to ‘f(a)’

5. Bf(a)f(f(a)) 4, 3, MP

6. (�x)Bf(x)f(f(x)) 5, EG

QED

In the short derivation 3.13.28, we instantiate to a two-place function, f(g(x), x), one of whose

arguments is itself a function.  Since none of the arguments of any of the functions in 3.13.28 are

constants, UG is permissible at line 3.

3.13.28 1. (�x)Cx / (�x)Cf(f(x), x)

2. -Cf(x, g(x)) 1, UI

3. (�x)-Cf(x, g(x)) 2, UG

QED

3.13.29 derives the conclusion of an argument which uses concepts from number theory in which

functions play an important role.

3.13.29 1. If the product of a pair of numbers is odd, then the product of the successors of

those numbers is even.

2. Seven and three are odd numbers.

3. The product of seven and three is odd.

So, the product of the successors of seven and three is even.

1. (�x)(�y){(Nx C Ny) e [Of(x, y) e Ef(f(x), f(y))]}

2. Os C Ns C Ot C Nt

3. Of(s, t) / Ef(f(s), f(t))

4. (�y){(Ns C Ny) e [Of(s, y) e Ef(f(s), f(y))]} 1, UI

5. (Ns C Nt) e [Of(s, t) e Ef(f(s), f(t))] 4, UI

6. Ns C Nt 2, Simp

7. Of(s, t) e Ef(f(s), f(t)) 5, 6, MP

8. Ef(f(s), f(t))   7, 3, MP

QED
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Exercises 3.13a.  Use the given key to translate the following sentences into FF.

For exercises 1-8 use the following key:

m: Mariel

Sxy: x is a sister of y

Txy: x takes care of y

Px: x is a person

f(x): the mother of x

g(x): the father of x

1. Mariel takes care of her mother. 

2. Mariel’s paternal grandmother takes care of Mariel. 

3. Mariel takes care of her grandmothers.

4. Mariel’s sister takes care of Mariel’s grandfathers.

5. Mariel’s only sister takes care of Mariel’s grandfathers.

6. No one is his/her own mother.

7. Not everyone is the father of someone.

8. Some maternal grandmothers are sisters to someone. 

For exercises 9-16 use the following key:

t: two

Ex: x is even

Ox: x is odd

Nx: x is a number

Px: x is prime

f(x): the square of x

g(x): the successor of x

f(x, y): the product of x and y

9. Two and its successor are prime numbers.

10. Not all odd numbers are prime.

11. The square of an odd number is odd.

12. The square of a number is not prime. 

13. The product of even numbers is even.

14. The product of a number and its successor is not prime.

15. The product of an odd number and an even number is even.

16. The square of a number is the product of it with itself.
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Exercises 3.13b. Derive the conclusions of each of the following arguments.

1. 1. (�x)(Ax e Af(x))

2. Aa

3. f(a)=b / Ab

2. 1. (�x)[Bx / Bg(x)]

2. (�x)g(x)=f(x,x)

3. Ba / Bf(a,a)

3. 1. (�x)Hf(x)

2. a=f(b) C b=f(c)

3. (�x)(Hx e -Ix) / a=f(f(c)) C -Ia

4. 1. (�x)[(Bf(x) e (Cx C Df(f(x)))]

2. (�x)Bf(f(x))

3. (�x)Cf(x) e (�x)Ex / (�x)[Df(f(f(x))) C Ef(f(f(x)))]

5. 1. (�x)(�y)[(Fx C Fy) e Gf(x,y)]

2. (�x)(�y)[Gf(x,y) / Gf(x,x)]

3. Fa C Fb / Gf(f(a,a))

6. 1. f(a,b,c)=d

2. (�x)(�y)(�z)(�w){f(x,y,z)=w e [Jw w Jf(w)]}

3. (�x)(Jx e Kx) / Kd w Kf(d)

7. 1. (�x)[(Px C Qx) e Rf(x)]

2. (�x)[Rx e (�y)Pxy]

3. -(�x)(Px e -Qx) / (�x)(�y)Pxy

8. 1. (�x)(�y)[(Pxy C Qxy) e -f(x)=y]

2. (�x)(�y)[Qxy / Qxf(y)]

3. f(a)=b C f(b)=a

4. Pab / -Qaa

9. 1. (�x)(�y){Qf(x,y) e [(Px C Qy) w (Py C Qx)]}

2. (�x)[Px e Qf(x)]

3. (�x)Qf(x,f(x))

4. -Pa / Qa C Pf(a)

10. 1. (�x)(�y){Pf(x,y) e [(Px C Py) w (Qx C Qy)]}

2. (�x)[Px e Pf(f(x)]

3. (�x)Pf(x, f(f(x)))

4. (�x)-Qx / (�x)Pf(f(a))
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§3.14: Higher-Order Quantification

Our last logical language is a controversial extension of predicate logic.  As always, we start with

an inference that seems intuitively valid and look for a way to express the inference in our formal logic.

3.14.1 There are red apples.

There are red fire trucks.

So, some apples and some fire trucks have something in common.

A natural way to express the inference at 3.14.1 is to quantify over the predicates themselves.  In

other words, we can treat the predicates as if they are variables and quantify over them as we do in line 8

of 3.14.2.

3.14.2 1. (�x)(Rx C Ax)

2. (�x)(Rx C Fx)

3. Ra C Aa 1, EI

4. Rb C Ab 3, EI

5. Ra 3, Simp

6. Rb 4, Simp

7. Ra C Rb 5, 6, Conj

8. (�X)(Xa C Xb) 7, by existential generalization over predicates

A language which allows quantification over predicate places is called a second-order language.

A system of logic which uses a second-order language is called second-order logic.  I’ll proceed to

introduce a second-order language, which I’ll call S.

We have previously allowed all capital letters to be predicate constants.  In our new second-order

logic, we are going to reserve ‘V’, ‘W’, ‘X’, ‘Y’, and ‘Z’ as predicate variables.  Introducing predicate

variables allows us to regiment some new sentences.

3.14.3 No two distinct things have all properties in common.

(�x)(�y)[x�y e (�X)(Xx C -Xy)]

3.14.4 Identical objects share all properties.

(�x)(�y)[x=y e (�Y)(Yx / Yy)]

3.14.4 is Leibniz’s law.  We saw Leibniz’s law and its converse, the identity of indiscernibles, at

3.11.8 and 3.11.9, written as schematic sentences in the metalanguage.  In a second-order language, we

can write them as simple object-level sentences.  The identity of indiscernibles is 3.14.5.

3.14.5 (�x)(�y)[(�Z)(Zx / Zy) e x=y]

The law of the excluded middle, which we saw as a metalinguistic schematic sentence at 1.6.5, is

also neatly regimented in second-order logic, with sentential variables, which you may recall we can take

as zero-place predicates.

3.14.6 (�X)(X w -X)

Second-order logic allows us to regiment analogies, like 3.14.7.

3.14.7 Cat is to meow as dog is to bark. (�X)(Xcm C Xdb)
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Actually, 3.14.7 contains a deviant use of constants.  But, it provides an example of the power of

the second-order quantifiers.

Recall the induction schema in Peano Arithmetic, which we saw as the fifth axiom at 3.13.16. 

Since it is a schema, the theory is not finitely axiomatizable: there are infinitely many instances of the

schema.  Second-order logic allows us to replace the induction schema with single axiom.  3.14.8 uses ‘a’

to stand for zero, ‘Nx’ for ‘x is a number’, ‘f(x)’ for the successor function, and quantifies over any

mathematical property using ‘X’.

3.14.8 (�X){{Na C Xa C (�x)[(Nx C Xx) e Xf(x)]} e (�x)(Nx e Xx)}

Vocabulary of S

Capital letters 

A...U, used as predicates

V, W, X, Y, and Z, used as predicate variables

Lower case letters

a, b, c, d, e, i, j, k...u are used as constants.

f, g, and h are used as functors.

v, w, x, y, z are used as singular variables.

Five connectives: -, C, w, e /

Quantifiers: �, �

Punctuation: (), [], {}

Formation rules for wffs of S.

1. An n-place predicate or predicate variable followed by n singular terms (constants,

variables, or functor terms) is a wff.

2. For any singular variable â, if á is a wff that does not contain either ‘(�â)’ or ‘(�â)’,

then ‘(�â)á’ and ‘(�â)á’ are wffs.

3. For any predicate variable â, if á is a wff that does not contain either ‘(�â)’ or ‘(�â)’,

then ‘(�â)á’ and ‘(�â)á’ are wffs.

4. If á is a wff, so is -á.

5. If á and â are wffs, then so are:

(á C â)

(á w â)

(á e â)

(á / â)

6. These are the only ways to make wffs.

Let’s return to the expressive powers of S.  3.14.9 - 3.14.11 show three simple translations.

3.14.9 Everything has some relation to itself. (�x)(�V)Vxx

3.14.10 All people have some property  in common.

(�x)(�y)[(Px C Py) e (�Y)(Yx C Yy)]

3.14.11 No two people have every property in common.

(�x)(�y)[(Px C Py) e (�Z)(Zx C -Zy)
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Second-order logic allows us to regiment three important characteristics of relations: reflexivity,

symmetry, and transitivity.  A relation is reflexive if every object bears that relation to itself.  Being the

same size as something is a reflexive relation.  So is being equidistant from a given point.  A relation is

symmetric if whenever one thing bears that relation to another, the reverse is also true.  Being a sibling is

a symmetric relation.  Being older than is asymmetric.  Lastly, transitivity is exemplified by hypothetical

syllogism.  Being older than, or larger than, or earlier than are all transitive relations.

These three properties of relations are especially important because they characterize identity. 

We call any relation which is reflexive, symmetric, and transitive an equivalence relation.  Identity is an

equivalence relation.

Given any particular relation, call it ‘R’, we can express that the relation is reflexive, symmetric,

or transitive without any use of second-order quantification, as I do at 3.14.12 - 3.14.14.

3.14.12 Reflexivity (�x)Rxx

3.14.13 Symmetry (�x)(�y)(Rxy / Ryx)

3.14.14 Transitivity (�x)(�y)(�z)[(Rxy C Ryz) e Rxz]

In mathematics, many relations, like ‘greater than’, are antisymmetric, which we can also

represent.

3.14.15 Antisymmetry (�x)(�y)(Rxy / -Rxy)

Second-order logic allows us to do more with these characteristics.  We can quantify over them

and make assertions concerning these properties.

3.14.16 Some relations are transitive. (�X)(�x)(�y)(�z)[(Xxy C Xyz) e Xxz]

3.14.17 Some relations are symmetric, while some are antisymmetric.

(�X)(�x)(�y)(Xxy / Xyx) C (�X)(�x)(�y)(Xxy / -Xyx)

The additional power of second-order logic also entails that we need not reserve a special identity

predicate.  Instead, we can just introduce it as shorthand for the second-order claim 3.14.17.

3.14.17 x=y  W  (�X)(Xx / Xy)

Higher-Order Logics

Second-order logic is only one of the higher-order logics.  All logics beyond first-order logic are

called higher-order logic.  To create third-order logic, we introduce attributes of attributes, for which I

will use boldfaced italics.  3.14.18 and 3.14.19 use third-order constants.

3.14.18 All useful properties are desirable. (�X)(UX e DX)

3.14.19 A man who possesses all virtues is a virtuous man, but there are virtuous men

who do not possess all virtues.

(�x){[Mx C (�X)(VX e Xx)] e Vx} C (�x)[Mx C Vx C (�X)(VX C -Xx)]

Though we haven’t introduced formation rules for third-order logic, and so we can’t say that they

are ill-formed, 3.14.18 and 3.14.19 are missing objects (terms) after some of their predicates.  Still, they
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are clear enough to give us the idea of third-order variables, and proper regimentations would obscure the

key idea.  We won’t spend much time on higher-order logics, so I won’t trouble to get these right.  The

only higher-order concept that will be useful to us is a version of identity for properties, at 3.14.20.

3.14.20 There are at least two distinct properties.

One potential regimentation of 3.14.20 is 3.14.21.

3.14.21 (�X)(�Y)X�Y

But 3.14.21 is ill-formed, since we have not defined identity for predicates, and since there are no

objects attached to the predicates.  We do have the ‘/’, which is an equivalence relation among

predicates.  Thus, we can translate 3.14.20 as 3.14.22.

3.14.22 (�X)(�Y)(�x)-(Xx / Yx)

Of course, 3.14.22 only indicates that there are distinct monadic properties.  In order to generalize

these claims, higher-order logics are required.

We will not consider derivations in higher-order logics. 

Exercises 3.14.  Translate each of the following sentences into S.  Exercises 16-20 are adapted from

Spinoza’s Ethics.  The parenthetical citations are standard; for example, ‘1p2’ refers to the second

proposition in part 1.

1. Liza has some attributes, but she lacks some attributes.

2. Cristóbal and Dante share no properties.

3. Reva has at least two different properties.

4. Everyone shares some property with Tudor.

5. Everyone shares some property with some monkeys. 

6. Some chemists share some property with Einstein.

7. Gillian shares some attributes with a famous scientist.

8. All psychologists and biologists have some property in common.

9. Alec shares some of his mother’s properties. (f(x): the mother of x)

10. Ron has all of his father’s properties. (g(x): the father of x)

11. Some attributes are properties of nothing.

12. Some relations are transitive.

13. Something lacks all symmetric relations.

14. Some relations are both reflexive and symmetric.

15. Something lacks all transitive relations.

16. Two substances, whose attributes are different, have no properties in common (1p2).

17. Two or more distinct things are distinguished by the difference of their attributes (1p4).

18. There cannot exist in the universe two or more substances having some attribute (1p5).

19. Two things with no common properties cannot be the cause of one another (1p3). (f(x): the cause of x)

20. Two things with no common properties cannot be understood through each other (1a5). (Uxy: x is

understood through y)
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Chapter 4: Logic and Philosophy

§1: The Laws of Logic and their Bearers

As the title of this book shows, the central concern in this book is logical consequence, what

follows from what.  Relatedly, if not quite equivalently, we are asking about the theorems, or laws, of

logic.  Of what do the laws of logic hold?

Before Frege, it was common to think of logic as the laws of thought.  The claim that logic

summarizes rules of thought is ambiguous, and not very compelling on either sense.  In the first sense, we

take the claim to be descriptive: logic describes how we actually reason.  On the descriptive

interpretation, we could find the laws of logic by surveying opinions about correct inferences. 

Unfortunately, people’s capacities for reasoning are limited.  We make logical errors.  On the descriptive

interpretation of logic, if enough people make an error, it could become a rule of logic.

On the prescriptive interpretation of taking logic to be the rules of thought, logic tells us what

thoughts should follow from which others.  That claim is more plausible, but still not right.  As Frege

argued, any view that makes the laws of logic hold of thoughts makes logic subservient to psychology. 

Moreover, in many cases, we do not choose what to think about.  The connections of our thoughts are

influenced by environment and chemistry in ways that derivations in logic are impotent to redirect.  If the

laws of logic hold of ideas, then they are essentially subjective, whether we hold this claim to be

descriptive or prescriptive.

In contrast, many more-recent philosophers, including Frege, believe that the laws of logic are

objective.  They are not about the connections of thoughts in our minds.  Laws of logic are about

entailments, whether formal or informal.  

To say that the laws of logic are objective, though, does not determine what in particular they

hold of.  Consider a typical simple theorem of logic, the law of the excluded middle, EM.

EM á w -á

EM is a sentence in our logical metalanguage.  It can be thought of as a schema, a rule for

generating particular theorems of our object language: ‘P w -P’; ‘Pa w -Pa’; ‘(�x)Px w -(�x)Px’.  Laws

like EM are naturally expressed as schemas written in the metalanguage.  They are not propositions

themselves, but they tell you how to form certain propositions, or how to infer some propositions from

others.  We write EM as a way of saying that any substitution instance of that metalinguistic sentence is a

tautology. 

The substitution instances we form from logical laws are sometimes called logical truths. 

(Sometimes we call the incomplete sentence of the metalanguage a logical truth, as well.)  ‘It is raining,

now’ requires, for it to be true, some justification outside of logic.  It must actually be raining in order for

that sentence to be true.  Logical truths require no justification outside of logic.  They can be shown true

using our semantics.  And they can be derived regardless of any assumptions, or premises.  In fact, they

can be derived with no premises at all using the indirect or conditional methods of proof.

The logical truths are the theorems of the logical theory we are using.  In addition to the law of

the excluded middle, we have seen the law of non-contradiction LC (which is sometimes called,

ironically, the law of contradiction).

LC -(á C -á)

While EM and LC are among the most well-known logical truths, there are infinitely many

theorems of all of our logical languages: PL, M , F, FF, and S.  LT1 and LT2 are two more examples of

schemas for producing logical truths of propositional logic:
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LT1 á e (â e á)

LT2 [á e (â e ã)] e [(á e â) e (á e ã)] 

We began this section by asking about what the laws of logic hold.  Now, it seems as if they hold

of instances of schemas like EM, LC, and LT1 and LT2.  But, what are these substitution instances?  That

is, what are we putting in the place of the ‘á’s?

One option for the instances is that the laws of logic hold of sentences.  The word ‘sentence’ is

ambiguous between sentence tokens and sentence types.  To see the difference, consider how many

sentences are in CD.

CD The cat dances.  The cat dances.

There are two sentence tokens, but only one sentence type.  The distinction between tokens and

types holds of all sorts of objects.  ‘Mississippi’contains four letter types, but eleven letter tokens.  The

poster of Klimt’s “The Kiss” hanging on a dorm-room wall is a token of the type which was originally

instantiated by Klimt himself.  A performance of Mahler’s Das Lied von der Erde by your local orchestra

is a token of the work.

The laws of logic do not hold merely of sentence tokens.  Consider disjunctive syllogism.

DS á w â

-á / â

In order for the conclusion of any instance of DS to follow from its premises, we have to

substitute the same thing for á in both instances, and the same thing for â in both instances.  But we can’t

substitute the same sentence token.  If one token is in the first place, a different token would have to be

put in the second place.  So, the laws of logic can’t be about sentence tokens.  

Perhaps what we want are sentence types.

CI The cat either dances or sings.

She doesn’t dance.

Therefore, she sings.

CI seems to be an instance of disjunctive syllogism.  But there are different sentence types

replacing á and different sentence types replacing â in DS.  The first premise isn’t even of the form ‘á w

â’, on the surface.  We can recast the first premise of CI so that it is more precisely in that form.

CI1 The cat dances or the cat sings.

Then ‘the cat dances’ replaces á in the major premise of DS and ‘the cat sings’ replaces â. 

Unfortunately, the conclusion, ‘she sings’, is still a different sentence type from ‘the cat sings’.  Similar

remarks hold for what replaces á: ‘she doesn’t dance’ has to be rewritten in order to look like the negation

of ‘the cat dances’.

While we can continue to recast CI so that we have exactly the same sentence types in precisely

the right positions, we need not do so in order to conclude that it is a version of disjunctive syllogism.  So,

it looks like disjunctive syllogism doesn’t hold of sentence types, either.

Fortunately there is another option.  The third option is to take the substituends for our

metalinguistic variables, i.e. that of which the laws of logic hold, to be propositions.  To understand

precisely what a proposition is, consider that CDE and CDS express the same proposition even though

they are different sentences, both types and tokens.
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CDE The cat dances.

CDS El gato baila.

Similarly, to adapt an example of Frege’s, consider telling a friend that you are ill.  You might

express your condition using the sentence II.

II I am ill.

Suppose you ask your friend to call the doctor for you.  She might use GI to explain her call to

the doctor.

GI Gustav is ill.

II and GI are different sentences, but they express the same proposition.

Propositions are the meanings of sentence types.  Notice that we do not see or hear propositions. 

We encounter sentence tokens.  We infer the type from the presence of the token.  By grasping the

meaning of the type, we understand the proposition it expresses.  Tokens are concrete, and types and

propositions are abstract.

The abstractness of propositions does not make them psychological.  Different people can think

of the same proposition.  My thoughts are in my mind, your thoughts are in your mind.  Indeed, thoughts

are tokens, like inscriptions.  So propositions are not thoughts.  They are the objects of thought.  While

our thoughts may share the same content, propositions are independent of any particular mind.

Propositions are naturally indicated by ‘that’, though they need not be expressed that way.  The

sentences ‘the cat dances’ and ‘el gato baila’ both express the proposition that the cat dances.  We can see

the use of that-clauses when we try to explain what a sentence means, as in MC.

MC ‘snow is white’ means-in-English that snow is white

Since propositions are meanings of sentences, we can see a proposition on the right side of MC. 

Notice that a that-clause is not a complete sentence: that snow is white; that 2+2=4; that the door is

closed; that I am in Clinton NY.  That-clauses are names of propositions.

Propositions can be used as subordinate clauses in a variety of other complex sentences.  We can

use a proposition in a question, a command, or in an expression of belief or desire.

Is it the case that snow is white?  (Or ‘Is snow white?’)

Make it the case that the door is closed.  (Or, ‘Close the door’.)

I believe that 2+2=4.

I wish that I were in Puerto Rico.

In some cases, writing complex sentences using that-clauses makes them more awkward.  But, it

reveals their logical structure.  Questions, commands, exclamations, beliefs, desires, and other complex

forms contain references to that-clauses as their basic components.

In addition to being mind-independent, propositions are language-independent.  They may be

expressed by sentences of language, but they technically belong to no language.  Some people think of

propositions as states of affairs.  What a sentence means is not in a language at all, just as the object to

which a term refers is not a linguistic object.

Propositions are not the only kinds of abstract objects.  Mathematical objects are also ordinarily

taken to be abstract objects.  Compare our knowledge of propositions with our knowledge of ‘2’ and

‘2+2=4’.  ‘2’ is the name of a number, but is not the number itself, just as I am Russell, but not ‘Russell’. 
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We see pizzas and frisbees, but we never see perfect geometric circles.  Numbers and geometric objects

are abstract: they are neither sensible objects nor ideas.  They inhabit what Frege calls a third realm.

We learn about mathematics in part by using names of mathematical objects, and diagrams. 

Similarly, we learn of propositions from our interactions with sentence tokens.  The sentence tokens we

use in our proofs are names of propositions.

VR is a last example to help explain why logic deals with propositions, and not sentence types.

VR Visiting relatives can be annoying.

VR corresponds to a single sentence type, but it is ambiguous between two propositions: that it is

annoying when relatives come to visit you and that it is annoying to visit one’s relatives.  If we try to

substitute a sentence type in a rule of inference, like disjunctive syllogism, we are liable to generate false

inferences because of the ambiguity.  Technically, then, we substitute propositions for the schamatic

variables in our laws of logic.  Of course, we write tokens representing, or expressing, those propositions.

The view that the laws of logic hold of abstract objects called propositions might be called the

traditional view, or the standard view.  But, it has come under attack for the last century or so.  Quine,

who was much smarter about both logic and philosophy than I am, argues that the arguments for the

existence of propositions are unsound, and that there are no such things as propositions.  In fact, he calls

intensions like propositions creatures of darkness.  He argues that belief in meanings in general is a myth,

the myth of the museum.  Other philosophers, like the later Wittgenstein, are also skeptical about

meanings.  Some of the worry about meanings arises from a problem of access: how can we learn of

objects in a distint third realm.  Some philosophers, wary of propositions and the third realm, attempt to

see the laws of logic holding of sentence types.  But, types are still abstract objects and the problems of

access to abstract objects remains.

Paper Topics

1. What are abstract objects?  How do they differ from both concrete objects and ideas?  Consider

mathematical objects as well as propositions.  You might also think about artworks including paintins and

musical compositions.  Consider an objection to the claim that there are abstract objects.

2. What are logical truths?  How can we characterize a logical truth?  What distinguishes a logical truth

from other kinds of truths?

Suggested Readings

Bealer, George.  “Propositions.”  In Jacquette.

Frege, “The Thought: A Logical Inquiry”

Katz, Jerrold.  The Metaphysics of Meaning.  The MIT Press, 1990.

Pap, Arthur.  “The Laws of Logic.”  In Jacquette.

Quine, W.V. Philosophy of Logic, 2  ed.  Harvard University Press, 1986.nd

Read, Chapters 1 and 2.
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§2: Disjunction, Unless, and the Sixteen Truth Tables

4.2.1. Logical Equivalence and Translation

In general, our logic is more fine-grained than natural language.  We can use it to make careful

distinctions, ones which are trickier to make in English.  As Frege wrote, using logic is like looking at

ordinary language through a microscope.  But every logical language has its limits.  One limit of

propositional logic concerns its extensionality.

When comparing expressions of natural language, we can distinguish between intensional

equivalence and extensional equivalence.  Two phrases that are intensionally equivalent have the same

meaning.  Two phrases that are extensionally equivalent have the same reference.  The difference between

meaning and reference may be seen clearly in the phrases CH and CK.

CH Creature with a heart

CK Creature with kidneys

As a matter of biology, creatures have hearts if and only if they have kidneys.  So, CH and CK

pick out the same creatures; they have the same referents.  But, CH and CK have different meanings. 

They are extensionally equivalent but intensionally different.

We provide the semantics for PL by giving truth conditions, using truth tables.  As long as the

truth conditions for two sentences are the same, we call the propositions logically equivalent.  Our truth-

functional logic does not distinguish between two logically equivalent propositions.  Thus, our logic is

extensional.  Sentences with different intensions, like QF1 and QF2, may be translated identically.

QF1 Quine is an extensionalist and Frege is not.

QF2 It is not the case that either Quine is not an extensionalist or Frege is.

To see that QF1 and QF2 are extensionally equivalent even if they are intensionally distinct, let’s

regiment them and look at their truth tables.

Q C - F

1 0 0 1

1 1 1 0

0 0 0 1

0 0 1 0

- (- Q w F)

0 0 1 1 1

1 0 1 0 0

0 1 0 1 1

0 1 0 1 0

Whatever differences they might have in meaning, QF1 and QF2 are logically equivalent.  Thus,

as far as our truth-functional logic is concerned, we can use these two propositions interchangeably.  They

have the same entailments.  They are consistent or inconsistent with the same propositions.

The notion of an intension, like the concept of a proposition, is controversial.  For now, we will

not pursue intensions.  In contrast, the concept of logical equivalence is the central concept in the

characterization of logic as extensional.  The concept of logical equivalence allows us to clear up two

related questions about translation.  The first concerns the use of disjunction for ‘unless’.  The second

concerns our use of inclusive disjunction for ‘w’.
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4.2.2. Unless and Exclusive Disjunction:

We ordinarily translate ‘unless’ using a w.  In this section, using the concept of logical

equivalence, I will explain why we do so.

Let’s consider the sentence CR and think about what we want as the truth values of ‘unless’ in

that sentence.  

CR The car will not run unless there is gas in its tank.

We’ll start by translating the ‘unless’ as a w, and constructing a standard truth table for the

proposition.

- R w G

0 1 1 1

0 1 0 0

1 0 1 1

1 0 1 0

Now, let’s think about what we want as the truth values for the proposition expressed by CR.

The car

runs

The car will not run

unless it has gas

The car has

gas

1 1

1 0

0 1

0 0

In the first row, the car runs and has gas, so the complex proposition CR should be true.  In the

second row, the car runs, but does not have gas.  In this case, perhaps the car runs on an alternative fuel

source, or magic.  The proposition CR should thus be false in the second row.

In the third row, the car does not run, but has gas.  Perhaps the car is missing its engine.  This

case does not falsify the complex proposition, which does not say what else the car needs to run.  CR

gives a necessary condition for a car to run (having gas), but not sufficient conditions.  Thus CR should

be considered true in the third row.  In the fourth row, the car does not run and does not have gas.  CR

thus should be true in the fourth row.
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So, from merely considering our desired truth values for the sentence, we get the following truth

table for ‘unless’.

The car

runs

The car will not run

unless it has gas

The car has

gas

1 1 1

1 0 0

0 1 1

0 1 0

Notice that the truth table for ‘unless’ is precisely the same as the truth table for the w.  Since the

two truth tables are the same, we can use the w to stand for ‘unless’; it gives us precisely what we want.

Unfortunately, this felicitous result does not hold for all uses of ‘unless’.  Let’s analyze LS the

same way we analyzed CR.

LS Liesse will attend school full time unless she gets a job.

Liesse

attends

school

Liesse will attend

school full time unless

she gets a job.

Liesse gets a

job

1 1

1 0

0 1

0 0

This time, let’s work from the bottom up.  In the last row, Liesse does not get a job but doesn’t go

to school.  LS should be false, since it says that she will attend school unless she gets a job.  In the third

row, she gets a job, and doesn’t go to school, and so the proposition should be true.  In the second row,

she attends school but doesn’t get a job, and so the proposition should be true.

In the first row, Liesse gets a job but attends school anyway.  What are your intuitions about the

truth value of LS in this case?

In my experience, most people who have not studied formal logic take LS to be false in the first

row.  It’s clear that if LS is true and Liesse does not get a job, then she will attend school.  Most people

also believe that if LS is true and Liesse does get a job, then she will not attend school.  In this case, the

truth table for LS should look as follows.
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Liesse

attends

school

Liesse will attend

school full time unless

she gets a job.

Liesse gets a

job

1 0 1

1 1 0

0 1 1

0 0 0

The truth table for ‘unless’ as used in LS seems to have the same truth conditions as exclusive

disjunction, not for w.

á w â

1 1 1

1 1 0

0 1 1

0 0 0

á exclusive or â

1 0 1

1 1 0

0 1 1

0 0 0

Unless thus appears to be as ambiguous as ‘or’, and in the same way: there’s an inclusive and

exclusive ‘unless’.  To regiment LS, we can use either ‘-S / J’ or ‘-(S / J)’, since they are logically

equivalent to the truth table we constructed for the sentence..

- S / J

0 1 0 1

0 1 1 0

1 0 1 1

1 0 0 0

- (S / J)

0 1 1 1

1 1 0 0

1 0 0 1

0 0 1 0

We can thus think of the exclusive unless as a biconditional: Liesse will not attend school if, and

only if, she gets a job.  When faced with an unless, we ordinarily just take it to be a w.  But, if we are

concerned about getting the truth conditions precisely correct, then we have to decide whether the

sentence functions more like CR, and so deserves the w, or more like LS, in which case we should write it

with a /.
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Here is another regimentation of LS, logically equivalent to the one we want: ‘(S w J) C -(S C J)’.

(S w J) C - (S C J)

1 1 1 0 0 1 1 1

1 1 0 1 1 1 0 0

0 1 1 1 1 0 0 1

0 0 0 0 1 0 0 0

We could, if we wished, introduce a new symbol for exclusive disjunction, say ‘XOR’ or ‘‘r’.

       Inclusive Disjunction

á w â

1 1 1

1 1 0

0 0 1

0 0 0

Exclusive Disjunction

á r â

1 0 1

1 1 0

0 1 1

0 0 0

But, we will not use r, since we do not need it.  If you have a sentence that you wish to regiment

as an exclusive disjunction, you can use a proposition of the form ‘-á / â’, or of any of the alternate

forms.

Given two variables, there are sixteen possible distributions of truth values.  We have labels for

four: C, w, e, and /.  We can define the other twelve, using combinations of the five connectives.  It is

kind of a fun exercise and you might want to try it.  As long as we can define all of the possibilities,

though, it doesn’t matter which we take to be basic.  We just have to be careful to translate our natural-

language sentences to have the truth conditions that we want them to have.  When translating unless, we

ordinarily use the wedge for inclusive senses, and as the default translation.  But we can use the

biconditional (with one element negated) for exclusive senses.



Marcus, What Follows, page 219

§3: Conditionals

4.3.1. The Material Interpretation of the Natural-Language Conditional

There are lots of different kinds of conditionals in natural language.

A Indicative conditionals: If the Mets lost, then the Cubs won.

B Conditional questions: If I like logic, what class should I take next?

C Conditional commands: If you want to pass this class, do the homework.

D Conditional prescriptions: If you want a good life, you ought to act virtuously.

E Cookie Conditionals: If you want cookies, there are some in the jar.

F Subjunctive conditionals: If Rod were offered the bribe, he would take it.

The material conditional and its standard truth table are used for indicative conditionals.  The

material conditional is true unless the antecedent is true and the consequent is false.

á e â

1 1 1

1 0 0

0 1 1

0 1 0

The truth table is false only in the second line.  Thus, we can think of the material conditional as

saying that ‘If á then â’ is equivalent to ‘Not (á and not-â)’ because a material conditional is false only

when the sentence replacing á is true and that replacing â is false.

The analysis of other kinds of conditionals seems to depend on our analysis of indicative

conditionals.  B, C, and D are not propositions as they stand, since they lack truth values.  But we can

parse them truth-functionally by turning them into indicatives.

B' If you like logic, then you take linear algebra next.

C' If you want to pass the class, you do the homework.

D' If you want a good life, you act virtuously

We can thus regiment B' - D' as material conditionals, just as we did for A.  E is not really a

conditional; it’s a fraud.

The material conditional is probably the best truth-functional option for representing the

conditional as it appears in English and other natural languages.  But, the natural-language conditional is

more complex than the material interpretation.  Thinking about a proper treatment of conditionals quickly

leads to important questions regarding the nature of scientific laws, and the ways in which they are

confirmed or disconfirmed.  Indeed, discussion of the proper treatment of conditionals is a central topic in

the philosophy of science.  Recent work in the logic of conditionals has also led to sophisticated modal

extensions of classical logic, called conditional logics.  Conditional logics are beyond the scope of this

text, but are worth considering.  Here, we will discuss a few of the subtleties of conditionals, and the

challenges facing those who wish to pursue their proper logical treatment.  In particular, conditionals of

type F, subjunctive conditionals, pose interesting challenges.
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4.3.2. Logical Truths and the Paradoxes of Material Implication

The material conditional creates what are called the paradoxes of material implication.  To

understand the paradoxes of material implication, one has first to understand the nature and importance of

logical truth.  A logical truth is a special sentence of a logical system, one which is true on all

interpretations.  The logical truths are thus the theorems of a system of logic.  In an axiomatic system, like

Euclidean geometry or a formal treatment of Newtonian mechanics, we choose a small set of privileged

sentences that we call axioms.  The axioms define the system.  In many cases, we insist that the axioms be

obvious and uncontroversial.  The theorems of a formal system are the statements that are provable from

the axioms.  Some sentences of propositional logic are theorems.  These statements are the logical truths.

We identify a system of logic, indeed any formal system, with its theorems.  Competing theories

have different theorems.  Two theories with different axioms, or assumptions, can turn out to be

equivalent, if they yield the same theorems.

Demarcate the totality of logical truths, in whatever terms, and you have in those terms specified

the logic (Quine, Philosophy of Logic, p 80.)

In order to know which system of logic we are using, which assumptions that system makes, we

look at the logical truths of the system.  To get a feel for logical truths, consider two.

F P e P

G [(P e (Q e R)] e [(P e Q) e (P e R)]

F and G have a natural obviousness that properly characterizes a theorem of logic, which is

supposed to be the most obvious of disciplines.  Many other tautologies are also obvious.

Among the paradoxes of material implication are statements of forms H, I and J.  We call them

paradoxes, a name which is probably too strong, beacuse they turn out to be logical truths even though

they are not obvious.

H á e (â e á)

I -á e (á e â)

J (á e â) w (â e á)

The paradoxes of material implication are both unobvious and have awkward consequences.  H

says, approximately, that if a statement is true, then anything implies it.  For, the truth table for the

material conditional is true on every line in which the consequent is true.  So, K is true, on the material

interpretation.

K If Martians have infra-red vision, then Obama is president of the United States in 2011.

Schema I says that if a statement is false, its opposite entails any other statement.  So L is true on

the material interpretation: since the antecedent of L is false, even an absurd consequent follows from it.

L If Bush is president of the United States in 2011, then Venusians have a colony on the

dark side of Mercury.

Lastly, J says that for any statement, â, either any other statement entails it, or it entails any

statement.  Every statement must be either true or false.  If a given statement is true, then, as in H, any

statement entails it.  If a given statement is false, then, as in I, it entails any statement.  So M is true,
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according to the material interpretation of the conditional.

M Either ‘Neptunians love to wassail’ entails ‘Saturnians love to foxtrot’ or ‘Saturnians love

to foxtrot’ entails ‘Neptunians love to wassail’.

Indeed, M is not only true, but a law of logic.  Further, either N or O is true.

N ‘It is raining’ entails ‘Chickens are robot spies from Pluto’.

O ‘Chickens are robot spies from Pluto’ entails ‘It is raining’.

If it is raining, then O is true (whatever the case is about chickens).  If it is not raining, then N is

true.  According to a further law of logic, called excluded middle, either it is raining or it is not raining. 

So, one or the other of N or O must be true even though they are both absurd sentences.

In sum, the paradoxes of the material conditional are two kinds of awkward results.  First,

statements of the form of H, I, and J (M, for example) are laws of logic that are not obviously true. 

Second, statements like K, L, and either N or O are true, given the truth values of their component

propositions, even we do not intuitively see them as true.

4.3.3. Dependent and Independent Conditionals

The paradoxes of material implication show that there is something funny going on with the e. 

To begin diagnose the problems with the material conditional, let’s distinguish between dependent and

independent conditional statements.

A dependent conditional has a connection between its antecedent and consequent.

I’ll leave exactly what I mean by a connection unstated, here, but here are some examples.  P-S

are dependent conditionals.

P If it is raining, then I will get wet.

Q If I run a red light, then I break the law.

R If the car is running, then it has fuel in the tank.

S If I were to jump out of the window right now, I would fall to the ground.

The material interpretation seems acceptable for dependent conditionals like P-S.  Even when the

antecedents are false, connections between the antecedents and consequents hold.  Recall the example

from §1.5.

T If you paint my house, I will give you five thousand dollars.

If the antecedent of T is not true, if you do not paint my house, we can take the conditional to be

true as a standing offer.  P is true because whether or not it is actually raining, I will get wet if it is.  Q is

true because whether or not I run a red light, the connection between doing so and breaking the law

remains.

In contrast, consider some independent conditionals.

An independent conditional lacks the connection we find in a dependent conditional
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K, L, N and O, awkwad instances of the paradoxes of the material conditional above, are

independent conditionals.  So are U-X.

U If 2+2=4, then cats are animals.

V If 2+2=4, then cats are robots.

W If pigs fly, then Utica is near Rome.

X If pigs fly, then Utica is the capital of Canada.

The material interpretation is awkward for independent conditionals.  Since ‘2+2=4’ is true and

‘cats are animals’ is true, U is true.  Since ‘2+2=4’ is true and ‘cats are robots’ is false, V is false.  Since

‘pigs fly’ is false, W and X are both true.  All of these results seem counter-intuitive for the natural-

language conditional.  I am hesitant to pronounce at all on their truth values.  The material interpretation

of the conditional thus seems acceptable for dependent conditionals.  But, it is only uncomfortably

applied to independent conditionals.

The paradoxes of material implication are awkward because they hold for any values of the

propositional variables, whether the relation is dependent or independent.  Still, we might accept the

material analysis of the conditional merely for the benefits it yields to the dependent conditional.  The

material interpretation of the conditional returns a truth value for any conditional combination of

propositions.  It allows us to maintain the truth functionality of our logic: the truth value of any complex

sentence is completely dependent on the truth value of its component parts.  The dependent conditional is

much more common than the independent one, anyway, and most people don’t have strong feelings about

the truth values of sentences like U-X.  The paradoxes of material implication may thus just be seen as the

price we have to pay to maintain truth-functionality.

One response to the paradoxes of material implication which you might be considering is to find

a different truth table for the conditional.  It’s worth a moment to see that this response is not productive. 

We will do so in two stages, first looking at the first two rows of the truth table for the material

conditional, and then at the second two rows.

4.3.4. Nicod’s Criterion and the First Two Rows of the Truth Table

The first two lines of the truth table for the material conditional, which are not counterfactual,

look fine, especially in dependent conditionals like P-T.  They represent what is known as Nicod’s

criterion for confirmation of a scientific claim.

Many scientific laws are conditional in form.  Nicod’s criterion says that evidence will confirm a

law if it satisfies both the antecedent and consequent of such a law.  It also says that evidence will

disconfirm a law if it satisfies the antecedent, but fails to satisfy the consequent.  Let’s take a sample law,

Coulomb’s law, which says that the force on two particles is proportional to the absolute value of product

1 2of the charges on each particle (q  and q ) divided by the square of the distance between them (r).

1 2CL F = k *q q */ r .  2

We analyze CL as a claim that if two particles have a certain amount of charge and a certain

distance between them, then they have a certain, calculable force between them.  We take evidence to

confirm the law if it satisfies the antecedent and the consequent of that conditional.  We take evidence to

disconfirm the law if it were to satisfy the antecedent and falsify the consequent.  If we were to find two

particles which did not have the force between them that the formula on the right side of Coulomb’s Law

says should hold, and we could not find over-riding laws to explain this discrepancy, we would seek a

revision of Coulomb’s Law.
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To take a simpler example, consider the claim that all swans are white.  We may analyze that

claim as, ‘if something is a swan, then it is white’.  When we find a white swan, which satisfies the

antecedent and the consequent, it confirms the claim.  If we were to find a black swan, which satisfies the

antecedent but falsifies the consequent, then it would disconfirm the claim.

According to Nicod’s criterion, instances which do not satisfy the antecedent are irrelevant to

confirmation or disconfirmation.  A white dog and a black dog and a blue pen have no effect on our

confidence in the claim that all swans are white.  Call a conditional in which the antecedent is false a

counterfactual conditional.  Nicod’s criterion thus says nothing about counterfactual conditionals.

We are considering alternatives to the material interpretation of the conditional.  The point of

mentioning Nicod’s criterion was to say that we should leave the first two lines of the truth table alone.

4.3.5. The Immutability of the Last Two Rows of the Truth Table for the Material Conditional

Given the first two rows, there are three possibilities for the third and fourth lines of the truth

table for the conditional that are different from the material interpretation.

Option A

á e â

1 1 1

1 0 0

0 1 1

0 0 0

Option B

á e â

1 1 1

1 0 0

0 0 1

0 1 0

Option C

á e â

1 1 1

1 0 0

0 0 1

0 0 0

Option A gives the conditional the same truth-values as the consequent.  It thus makes the

antecedent irrelevant.  Option B gives the conditional the same truth-values as a biconditional.  Option C

gives the conditional the same truth-values as the conjunction.  The conditional seems to have a different

role in natural language from either the biconditional or the conjunction.  Thus, the truth table for the

material conditional is the only one possible with those first two lines that doesn’t merely replicate a truth

table we already have.

To see the problem more intuitively, consider again a good counterfactual dependent conditional

like S.

S If I were to jump out of the window right now, I would fall to the ground.

Option A says that S is falsified when I don’t jump out the window and I don’t fall to the ground. 

Options B and C say that S is falsified when I don’t jump out of the window and I do fall to the ground. 

But, neither case seems to falsify S, as it is intended.  The only time that S is falsified, as on Nicod’s

criterion, is in the second line of the truth table, when I jump out of the window and, like the Coyote for

just a moment after he races off a cliff, I hang in the air.
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It looks like we have to stick with the original truth table, if we want the conditional to be truth-

functional.

4.3.6. Subjunctive and Counterfactual Conditionals

We have been considering whether and to what extent the material conditional stands for the

natural-language conditional.  Our worries about independent indicative conditionals were allayed by two

considerations.  First, we don’t have strong feelings about the truth values of many of those sentences,

like U-X, which seem rare and deviant.  Second, our desire to maintain truth-functionality entails that we

have to give all complex propositions truth values on the basis of the truth values of their component

sentences, and the material conditional is the only option that respects our strong feelings about the first

two rows of the table.  The first two rows of the truth table for the material conditional capture our

intuitions about dependent conditionals, as well.  Despite worries about the paradoxes of the material

implication and the oddities of material interpretations of independent conditionals, the material

interpretation seems to be the best way to maintain truth-functionality.

Unfortunately, more problems beset the material conditional.  Subjunctive conditionals,

especially in their counterfactual interpretations, raise further problems.  Consider again E.

E If Rod were offered the bribe, he would take it.

If its antecedent is true, we know how to evaluate E.  If Rod takes the bribe, then E is true; if he

refuses the bribe, then E is false.  According to the material interpretation of the conditional, if Rod is

never offered the bribe, then E is true.  In the case of E, this result might be acceptable.  But, there are

cases in which a conditional with a false antecedent should be taken as false.  Compare S, which is a

subjunctive conditional similar to E, with S'.

S If I were to jump out of the window right now, I would fall to the ground.

S' If I were to jump out of the window right now, I would flutter to the moon.

According to the material interpretation, S and S' are true, since I am not jumping out of the

window.  But, S is true and S' is false.

The difference between S and S', and its inconsistency with the material interpretation of the

conditional, has come to be known as the problem of counterfactual conditionals.  Nelson Goodman, in

his famous paper on the problem, contrasts Y with Y’.
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Y If that piece of butter had been heated to 150EF, it would have melted.

Y’ If that piece of butter had been heated to 150EF, it would not have melted.

Let’s imagine that we never heat that piece of butter, so that Y and Y’ both contain false

antecedents.  According to the material interpretation, since the antecedents of Y and Y’ are both false, or

counterfactual, both sentences come out as true.  But, it seems that they should be taken as contraries.

They can’t both be true.  Indeed, just as we want to call S true and S' false, we want to call Y true and Y’

false.

We have already seen that there are no good options for alternative truth tables.  If we want to

distinguish among counterfactual conditionals, we may have to quit thinking of the natural-language

conditional as a truth-functional operator.

4.3.7. Non-Truth-Functional Operators

We might resolve the tension between Y and Y' by claiming that ‘if...then...’ has two meanings.

The, let’s say, logical aspects of the natural-language conditional may be expressed by the truth-

functional ‘e’ , encapsulated by the truth table for the material conditional.  Other aspects of the natural-

language conditional might not be truth-functional at all.  We could introduce a new operator, strict

implication, Y , to regiment conditionals whose meaning is not captured by the material interpretation. 

Statements of the form ‘á e â’ could continue to be truth-functional, even though statements of the form

‘á Y  â’ would be non-truth-functional.  So, consider again, sentence U.

U If 2+2=4, then cats are animals.

We could regiment it as ‘T e C’ in the standard way.  We could, alternatively, regiment it as ‘T Y

C’.  ‘T Y  C’ would lack a standard truth-value in the third and fourth rows.  We could leave the third and

fourth of the truth table rows blank, neither true nor false.  Or, we could add a third truth value, often

called undetermined, or indeterminate.  Such a solution would leave many conditionals, especially

counterfactual conditionals, without truth values.  Introducing Y  would entail giving up our neat bivalent

semantics for propositional logic.

Another option, deriving from the early-twentieth-century logician C.I. Lewis and gaining

popularity in recent years, is to  interpret strict implication modally.  Lewis defined ‘á Y  â’ as ‘~(á e â)’. 

The ‘~’ is a modal operator.  There are many interpretations of modal operators.  They can be used to

construct formal theories of knowledge, moral properties, tenses, or knowledge.  For Lewis’s suggestion,

called strict implication, we use an alethic interpretation of the modal operator, taking the ‘~’ as

‘necessarily’.  So, on the modal interpretation of conditionals, a statement of the form ‘á Y  â’ will be true

if it is necessarily the case that the consequent is true whenever the antecedent is.

Modal logics are controversial.  Some philosophers believe that matters of necessity and

contingency are not properly logical topics.  Other philosophers worry that our ability to know which

events or properties are necessary and which are contingent is severely limited.

One advantage of introducing a modal operator to express implication is that it connects

conditional statements and scientific laws.  A scientific law is naturally taken as describing a necessary,

causal relation.  When we say that event A causes event B, we imply that A necessitates B, that B could

not fail to occur, given A.  To say that lighting the stove causes the water to boil is to say that, given the

stability of background conditions, the water has no choice but to boil.  Thus, we might distinguish the

two senses of the conditional by saying that material implication represents logical connections, where

strict implication attempts to regiment causal connections.
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4.3.8. Counterfactual Conditionals and Causal Laws

As we have seen, the natural-language conditional often indicates a connection between its

antecedent and its consequent.  Consider again the dependent conditionals P-T.

P If it is raining, then I will get wet.

Q If I run a red light, then I break the law.

R If the car is running, then it has fuel in the tank.

S If I were to jump out of the window right now, I would fall to the ground.

T If you paint my house, I will give you five thousand dollars.

The connection in Q is mainly conventional.  T refers to an offer or promise.  But, P, R, and S are

fundamentally causal, depending on most basic scientific laws.  Our investigation of the logic of the

conditional has taken us into questions about causation.

á If this salt had been placed in water, it would have dissolved.

á indicates a dispositional property of salt, one that we use to characterize the substance.  Other

dispositional properties, like irritability, flammability, and flexibility, refer to properties interesting to

scientists.  Psychological properties, like believing that it is cold outside, are often explained as

dispositions to behave, like the disposition to put on a coat or say, “It’s cold.”  Contrast á with â,

â This marble counter is soluble in water.

If we never place the counter in water, then â comes out true on the material interpretation.  To be

flammable is just, by definition, to have certain counterfactual properties.  These pajamas are flammable

just in case they would burn if subjected to certain conditions.  The laws of science depend essentially on

precisely the counterfactual conditionals that the logic of the material conditional gets wrong.

Goodman argues that the problem with counterfactual conditionals is that they are not merely

logical relations.  The problem of giving an analysis of the logic of conditionals is intimately related to

the problem of distinguishing laws from accidental generalizations, as the comparison of ã with ä shows.

ã There are no balls of uranium one mile in diameter.

ä There are no balls of gold one mile in diameter.

The explanation of ã refers to scientific laws about critical mass.  If you gather too much uranium

in one spot, it explodes.  The explanation of ä, in contrast, is merely accidental.  It is entirely possible that

we could gather that much gold together, while it is impossible to gather the same amount of uranium.  In

order to know that difference, though, you must know the laws which govern the universe.

Goodman’s claim is that the problem of distinguishing ã from ä, the problem of knowing the laws

of nature, is inextricably linked to the problem of understanding the logic of the natural-language

conditional.  We may use conditionals as truth-functional connectives, sometimes.  More commonly,

especially in counterfactual cases, we use them to state connections between antecedents and consequents. 

So, a conditional will be true if the relevant connections hold among the antecedent and the consequent. 

It is false if such connections do not.

A counterfactual is true if a certain connection obtains between the antecedent and the

consequent.  But...the consequent seldom follows from the antecedent by logic alone (Goodman,

“The Problem of Counterfactual Conditionals” 7-8).
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Consider á, or Goodman’s sentence å.

å If that match had been scratched, it would have lighted.

For either á or å to be true, there have to be a host of other conditions satisfied.

We mean that conditions are such - i.e. the match is well made, is dry enough, oxygen enough is

present, etc. - that “That match lights” can be inferred from “That match is scratched.”  Thus the

connection we affirm may be regarded as joining the consequent with the conjunction of the

antecedent and other statements that truly describe relevant conditions (Goodman, “The Problem

of Counterfactual Conditionals” 8, emphasis added).

When we assert a conditional, we commit ourselves to the relevant related claims.  But, to

understand the claims to which we are committed, we must understand the relevant connections between

the antecedent and the consequent.  We must understand the general laws connecting them.

The principle that permits inference of ‘That match lights’ from ‘That match is scratched.  That

match is dry enough. Enough oxygen is present.  Etc.’ is not a law of logic but what we call a

natural or physical or causal law (Goodman, “The Problem of Counterfactual Conditionals” 8-9).

In order to infer the consequent of á, for example, from its antecedent, we need to presume causal

laws governing the dissolution of salt in water.  In order to infer the consequent of å from its antecedent,

we need to presume causal laws about the lighting of matches.  Goodman thus argues that a proper

analysis of counterfactual conditionals would include two elements.

1. A definition of the conditions that are relevant to the inference of a consequent from an

antecedent.

2. A characterization of causal laws.

We have gone far from just understanding the logic of our language.  We are now engaged in a

pursuit of the most fundamental features of scientific discourse.  Distinguishing between S and Y, or

between Z and Z', in contrast to the material interpretation, would import extra-logical features into our

logic.  While we believe that Y and Z' are false, our reasons for that belief do not seem, now, to be a

matter of logic.  The reasons we think that they are false are due to the laws of physics.  If we were living

on a planet with very little gravitational force, but on which buildings had limited force fields that kept us

tethered to the ground inside, it might indeed be the case that if I jumped out of the window, I would fly

to the moon, rather than fall to the ground.

We really want our logic to be independent of all the extra-logical facts.  We don’t want to import

the physical facts into our logic, since we want our logic to be completely independent of the facts about

the world.  Thus, we rest with the material interpretation of the natural-language conditional, giving up

hope for a truth-functional analysis of the causal conditional, and remembering that the natural-language

conditional represents a strictly logical relation.
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Paper Topics

1. Contrast the following pair of counterfactual conditionals.

If bin Laden didn’t plan the 9-11 attacks, then someone else did.

If bin Laden hadn’t planned the 9-11 attacks, then someone else would have.

The antecedents and consequents of these statements are nearly identical, but, our estimations of the truth

values and semantics of U and U' are different.  Discuss the similarities and differences among these

sentences.  Can we use the material conditional for this example?  Are there other options?  See Bennett

and Jackson for discussions of a relevantly similar pair of sentences.

2. Consider the following inference.

If this is gold, then it is not water-soluble.

So, it is not the case that if this is gold then it is water-soluble.

Intuitively, this argument seems valid.  But, if we regiment the argument in a standard way, we

get an invalid argument.  Discuss this problem in the light of the discussion of the material conditional. 

For possible solutions, you might look at Lewis and Langford 1932; Priest 2008; or Goodman’s work.

3. In relevance logic, we insist that for a conditional to be true, its antecedent and consequent must be

appropriately related.  People working on relevance logics are mostly following C.I. Lewis’s suggestion

concerning strict implication.  See Priest 2008.

4. Lewis on strict implication

5. The philosopher Paul Grice, responding in part to the problems of the conditional, distinguished

between the logical content of language, and other, pragmatic, features of language.  In addition to

Grice’s paper, Fisher, Priest, and Bennett all have useful discussions of Grice’s suggestion.

6. Connections to three-valued logics

7. Lewis Carroll’s paper, “A Logical Paradox”

8. Goodman, and the relation between conditionals and scientific laws.  Hempel.

9. Frank Jackson and David Lewis have extended treatments of conditionals
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§4: Syntax, Semantics, and the Chinese Room

4.4.1. Theories of the Mind

We have mainly been thinking of logic as a language for formally representing our beliefs and

inferences.  We can also use it to program computers and to simulate human reasoning with machines. 

The electronic circuitry in computers follows logical laws and logic is used to plan and program

computers.  In science fiction stories, we are often faced with robots or androids who seem to be just like

human beings.  Neuroscientists modeling brain activity and function use computers to model human

cognitive processing.  These uses of logic lead us naturally to ask the question, “What is a mind?”  Can

machines like robots have minds?  Similarly, we could ask the question whether animals have minds.

There are four prominent, general theories about the nature of mind: dualism, behaviorism,

identity theory, and functionalism.  I will discuss the first three theories briefly, and the major difficulties

they face.  Then, we will focus on the fourth.  The distinction we have made formally between the syntax

and the semantics of a theory supports a surprising claim about the nature of minds and about the

possibility of artificial intelligence.

Dualism in the philosophy of mind is the theory that there are two kinds of things, or substances,

in the world: there are bodies and there are minds.  The dualist believes that minds are non-physical

substances.  We sometimes call dualist minds souls; they are the seat of thought.  Someone who believes

that the soul can live past the death of the body is a dualist.  Among prominent dualists in the history of

philosophy are Plato and Descartes.

According to dualists, our minds are somehow attached to our bodies, while our bodies are alive,

while being independent of them.  Most dualists believe that the mind can live past the death of the body.

Some dualists believe that the mind exists prior to the body.  The central problem for dualism is the

problem of interaction: how does an immaterial substance interact with a physical substance?

It is easy to see how two physical objects can affect one another by impact.  When a swung bat

hits a thrown ball, it transfers some of its momentum to the ball.  Bodies can also affect each other at a

distance.  Magnets create fields of attractive force.  The Earth’s gravitational force keeps the moon in

orbit; the moon’s gravitational force creates the ocean tides on Earth.  All of these cases are of physical

objects affecting other physical objects.  If the mind is an immaterial soul, then it seems impossible for it

to have any physical effects in the world.  How can my thought that I would like a milk shake lead me to

drink a milk shake?

The dualist must explain some way for the mind to communicate with the body.  The

communication can not be strictly physical since the mind is isolated from the physical world.  Similarly,

the communication can not be strictly mental since the physical world is isolated from the mental world. 

If there are two distinct kinds of substances, it seems impossible that they would be able to communicate.

In opposition to dualists, before the twentieth century, there were two different kinds of monists. 

Idealist monists, like Leibniz and Berkeley, claimed that the physical, material world is illusory and that

the only real things are mental: ideas and their (non-physical) thinkers.  I won’t spend time on idealist

views.  Materialist monists, like Hobbes, denied the existence of minds and claimed that only material

substances exist: everything is bodies and there are no immaterial souls.  The central problem for the

materialist monist, historically, is that it seemed unlikely that something as complex and private and

ineffable as human consciousness could be the product of physical interactions.

[P]erception and that which depends upon it are inexplicable on mechanical grounds, that is to

say, by means of figures and motions.  And supposing there were a machine, so constructed as to

think, feel, and have perception, it might be conceived as increased in size, while keeping the

same proportions, so that one might go into it as into a mill.  That being so, we should, on

examining its interior, find only parts which work one upon another, and never anything by

which to explain a perception (Leibniz, Monadology §17).
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Until the twentieth century, the possibility of explaining human consciousness seemed to many

people to be as absurd as it did to Leibniz.  How could there be physical explanations of pains and

pleasures and perceptions and thoughts?  But progress in science began to make the possibility of

explaining minds in physical terms increasingly plausible.  Behaviorism was the first serious materialist

theory developed in the twentieth century.  The behaviorist says that minds are just behaviors.  To say

that someone is hungry (a mental state) is just to say that s/he is disposed to go to have a meal or a snack

(both behaviors).  My desire for a milk shake is not some internal thought about a milk shake; it is just my

behavior, or my predisposition for behavior, around milk shakes.  To say that someone is in pain is just to

say that s/he is likely to cry or scream or in some other way express pain behavior.

Behaviorism was favored by many psychologists.  By defining mental states as dispositions to

behave, mental states became accessible to scientists, legitimate objects of serious empirical study unlike

immaterial souls.  The behaviorist thus avoids the problem of interaction.  Behaviors are physical.  If

mental states are just behaviors or dispositions to behave, then they can be explained in terms of physical

facts.

Unfortunately, the behaviorist provides an anemic account of our internal states.  For example,

consider two chess players.  The first player stares inscrutably at a chess board for fifteen minutes,

thinking quietly and unnoticeably about various different possible moves.  After fifteen minutes, the first

player makes a move.  Another chess player, faced with the same board, also stares at it for fifteen

minutes.  But, the second player is thinking about restaurants for dinner after the match.  After fifteen

minutes, the second player makes the same move as the first player, but without thinking about any other

possible moves.  Both players exhibited the same behavior.  But, they did so as a result of very different

mental processes.  The behaviorist has little ability to differentiate the mental states of the two players,

since they both exhibited the same behaviors.

The third prominent theory of mind, identity theory, was an attempt to recapture internal mental

states without succumbing to dualism.  The identity theorist identifies minds with brains: mental states are

just human brain states.  Identity theory thus differentiates our two chess players on the basis of their

quite different neural processes.  Since the two players had different neural firings, they had different

thoughts even though their behaviors were identical.  Identity theory is supported, obviously, by

neurological research.  The more we understand about the brain, the less compelling Leibniz’s claim that

it could not support thought appears to be.  Progress in brain science has refined our understanding of

different mental capacities and states remarkably over the last century.

But our increased understanding of brain states and their correlations with certain mental states

has not supported the identity theory.  One serious problem with identity theory is its chauvinism.

According to identity theory, only human beings can have minds, since only human beings have human

brains.  Imagine that we meet an alien from another planet made out of a different substance, say silicon. 

The aliens brain, let’s suppose, has a radically different organization from a human brain.  Further, let’s

suppose that the alien behaves and interacts with us as if it were human.  We would surely grant that the

alien has a mind.  But, if mental states are brain states, as the identity theory says, then the alien, lacking a

human brain, could not have a mind.  More importantly, to return to our original question, androids,

machines that act like people, could not be conscious by definition: they lack human brains.

In response to the difficulties with these three theories of the mind, many philosophers defend a

fourth theory: functionalism.  Most functionalists agree with identity theorists and other materialists that

there are no immaterial souls.  Most functionalists also agree that there is more to our mental life than our

behavior.  But the functionalist identifies minds with the brain’s processing, rather than the brain itself. 

According to functionalism, anything that behaves like something with a mind and that has internal

processes that map onto our internal processes, has a mind.  Since computers do not have brains, the

identity theorist says that they can not think.  Functionalists argue that what is important about minds is

the software, rather than the hardware: the mind is the software of the brain.  Functionalists are thus

sympathetic to the claim that machines can think, that there can be artificial intelligence (AI).  According
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to the functionalist defender of AI, mental states can be instantiated in different kinds of physical bodies. 

They could even be instantiated in an immaterial substance.  What’s important is the processing of

information, not any physical basis of that process.  Functionalism thus avoids the chauvinism of identity

theory.  Any kind of thing can be a mind: a human being, a computer, an alien, an immaterial soul, as

long as it processes information, responds to inputs, and produces behaviors in ways that are indicative of

the kinds of acts that we call mental.

Saying Deep Blue doesn’t really think about chess is like saying an airplane doesn’t really fly

because it doesn’t flap its wings  (Drew McDermott,

ftp://ftp.cs.yale.edu/pub/mcdermott/papers/deepblue.txt).

Functionalism might be seen as an abstract form of identity theory.  Compare yourself to a

sophisticated android, one that is built with the same structure as yourself, but out of different materials. 

You can see rainbows and taste strawberries.  The android can see rainbows and taste strawberries.  You

can have a toothache, and the android can have a toothache.  The details of what happens in your brain

when you have a toothache will be different from the details of what happens in the android’s brain. 

Your pain is in a human brain.  The android’s pain is in its silicon circuitry.  But, the functional

organization will be the same: the same kinds of inputs will produce the same kinds of outputs, with the

same sorts of intermediate processes.  For the functionalist, you and the android each have a pain.  What

makes the mental state such that you can each have it is its functional organization, not its material

instantiation.

Functionalism is both consistent with a materialist view of the world and subtle enough to

accommodate both internal processes (like the identity theorist) and behavioral correlates of

psychological states (like the behaviorist).  Thus, it has been popular with computer scientists eager to

find profound implications of their work.  Sometimes, these scientists can make extravagant claims.  For

example, the computer scientist John McCarthy claims that even the simplest machines can have beliefs. 

He argues that a thermostat has three beliefs: that it is too cold, that it is too hot, and that it is just right. 

We might want to take McCarthy’s use of ‘belief’ as metaphorical, not literal.  When my wife says that

the mosquitos believe that she is tasty, we are best interpreting her words as metaphors.  Most of us don’t

think that mosquitos have conscious beliefs, but we explain their behavior simply by ascribing beliefs to

them.  On the other hand, if someone says that a chimp or a dolphin has beliefs, we don’t know whether

to take such a statement literally or metaphorically, or to what degree.  But McCarthy does not intend his

claim about the beliefs of machines to be understood metaphorically.  Defenders of artificial intelligence

believe that there is no important difference between human beliefs and machine beliefs.  

For the functionalist, whether you are in a particular mental state depends on both external,

verifiable factors and internal factors like whether or not you are actually perceiving the rainbow or

feeling the toothache.  Those latter criteria are, like the hypothesis that other human beings are sentient,

not amenable to external verification.  I have no way of knowing for sure whether or not you are (or any

other human being is) a carefully-crafted robot.  You can say that you are not a robot, but you might just

be constructed to say that, like a child’s talking doll.  I know precisely what the conditions for you to be

sentient are.  For you to be conscious is for you to be relevantly like me.  But, I can not verify, or

experience for myself, the contents of your mind.

One of the main problems with functionalism and AI involves the qualitative aspect of conscious

experience.  I know what mangoes taste like, independently of their chemical properties.  I assume that

you do too, despite my not being able to verify that you do.  It seems unlikely that an android would

experience the sweet taste of a mango in the same way that you and I experience it.  We will not explore

that problem, here, though.  Our interest in functionalism and AI depends on a famous objection to the

possibility of AI from a philosopher named John Searle.  Searle’s worry concerns a different mental

property, which we can call intentionality.

ftp://ftp.cs.yale.edu/pub/mcdermott/papers/deepblue.txt
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4.4.2. Searle and Strong AI

Searle presents an argument against functionalism and artificial intelligence based on the

distinction between syntax and semantics.  His argument is directed against a strong AI thesis.  A weak

AI thesis is just the unobjectionable claim that machines built to perform tasks that humans perform can

give us some insight into the nature of our thought.  Weak AI is uncontroversial, except for the most

enthusiastic dualists.  Proponents of AI are committed to a stronger thesis.

Cheap calculators can now perform very complicated tasks much more quickly than even the

smartest humans.  Machines are already able to do many tasks that once were inconceivable, including

proving mathematical theorems that require more computation than humans can perform.  Better

machines may approach or overtake human skill in other areas as well.  The strong AI claim is that

computers with such skills actually have minds.  It is the same as McDermott’s claim about Deep Blue. 

The claim entails that we need not know about the structure of the brain in order to know about the

structure of the mind.  All we need in order to have a mind is to simulate the behavior, along with some

plausible internal causes of that behavior.  To understand minds, according to Strong AI, we only need to

understand computer models and their software.  Searle’s characterization of strong AI is the same as our

characterization of functionalism in terms of computers; the mind is the software of the brain.

The first thing to notice about computers and their software is that they work according to purely

formal, syntactic manipulation.  The syntax of a program or system of formal logic concerns its form, or

shape.  Our rules for wffs are syntactic.  The semantics of a system or program concerns the meanings of

its terms.  When we interpret a set of propositional variables as meaning something, we are providing a

semantics, as when we give a translation key for a formal argument.  It will be useful, both now and later,

to make a clear distinction between syntax and semantics.

4.4.3. Syntax and Semantics

This text is centrally focused on constructing and using formal systems of logic.  Whenever we

introduce a formal system of logic, we introduce two languages: an object language and a metalanguage.

The object language is the language that we are studying.  The metalanguage is the language we use to

study the object language.  The rules for well-formed formulas are written in the metalanguage, but they

are about how to construct the object language.  The rules for forming wffs are syntactic.  Similarly, the

rules for constructing truth tables, indeed the truth tables themselves, are written in a metalanguage. 

That’s why we use 1 and 0, which are not symbols of our object language.  The rules for assigning truth

values are semantic rules.

Whenever one constructs a formal language, one provides both a syntax and a semantics for that

language.  The syntax tells how the formulas are constructed.  The semantics tells how to interpret the

formulas.  Inference rules and rules of equivalence are also specified syntactically.  They hold for any

interpretation of the formulas, which makes them both powerful and uncontroversial.

Separating the syntax of our language from its semantics allow us to treat our formal languages as

completely uninterpreted, or topic-neutral.  We can play with the symbols, according to the rules we

specify, as if they were meaningless toys.  We can interpret our languages variously, comparing

interpretations in order to see the properties of the language itself clearly.  Frege, indeed, was motivated

specifically by the possibility of specifying a syntactic criterion for logical consequence.  He wanted to

ensure that some odd results which had arisen in mathematics in the nineteenth century were not

illegitimate.  He wanted to ensure that all deductions are secure, and that we do not implicitly smuggle

into our results unjustifiable interpretations.  We, like Frege, want to make sure that we do not presuppose

a hidden, implicit premise.

The preface to Frege’s Begriffsschrift, the title of which means concept-writing, makes his

motivation clear.
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So that nothing intuitive could intrude [into our concept of logical consequence] unnoticed,

everything had to depend on the chain of inference being free of gaps.  In striving to fulfil this

requirement in the strictest way, I found an obstacle in the inadequacy of language: however

cumbersome the expressions that arose, the more complicated the relations became, the less the

precision was attained that my purpose demanded...The present Begriffsschrift...is intended to

serve primarily to test in the most reliable way the validity of a chain of inference and to reveal

every presupposition that tends to slip in unnoticed, so that its origin can be investigated.

By separating the syntax of logic, its formation and derivation rules, from its semantics, its

interpretations and our ascriptions of truth and falsity, we are attempting to fulfil Frege’s dream of a

secure theory of logical consequence.

4.4.4. The Chinese Room

Computers, in their most basic form, contain a complete list of possible states of the system, and

possible inputs, and the output, all specifiable syntactically.  The actions of a computer are completely

determined by its algorithm, or set of rules.  An algorithm is just a list of instructions, a procedure. 

Computer programs are algorithms; cooking recipes are algorithms.  Recipes generally just give simple,

linear instructions.  An algorithm can also do different things depending on the state of the system

executing the algorithm.  Thus, some algorithms, like the one we generally use for long division, contain

conditional clauses: if the machine is in such-and-such a state, and receives such-and-so input, then it

does this-and-that and moves into this other state.

Computers merely follow algorithms.  Moreover, every step of the algorithm can be specified

syntactically, by its inscription.  When we play a video game, we see cars and people, and hear music.

We interact with the machine on a semantic level.  But, the computer is just processing syntax, crunching

0s and 1s.  So, if strong AI and functionalism are right, then human behavior must be describable

algorithmically as well, and representable in purely syntactic form, using a formal language like the one

we use in logic.

Searle’s Chinese room example is closely related to the qualia objections to functionalism.  Searle

provides an example of a person working according to purely formal, syntactic rules.

Imagine that a bunch of computer programmers have written a program that will enable a

computer to simulate the understanding of Chinese.  So, for example, if the computer is given a

question in Chinese, it will match the question against its memory, or data base, and produce

appropriate answers to the questions in Chinese.  Suppose for the sake of argument that the

computer’s answers are as good as those of a native Chinese speaker.  Now then, does the

computer, on the basis of this, understand Chinese, does it literally understad Chinese in the way

that Chinese speakers understand Chinese?  Well, imagine that you are locked in a room, and in

this room are several baskets full of Chinese symbols.  Imagine that you (like me) do not

understand a word of Chinese, but that you are given a rule book in English for manipulating

these Chinese symbols.  The rules specify the manipulations of the symbols purely formally, in

terms of their syntax, not their semantics.  So the rule might say: ‘Take a squiggle-squiggle sign

out of basket number one and put it next to a squoggle-squoggle sign from basket number two.’ 

Now suppose that some other Chinese symbols are passed into the room, and that you are given

further rules for passing back Chinese symbols out of the room.  Suppose that unknown to you

the symbols passed into the room are called ‘questions’ by the people outside the room, and the

symbols you pass back out of the room are called ‘answers to the questions.’  Suppose,

furthermore, that the programmers are so good at designing the programs and that you are so
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good at manipulating the symbols, that very soon your answers are indistinguishable from those

of a native Chinese speaker.  There you are locked in your room shuffling your Chinese symbols

and passing out Chinese symbols in response to incoming Chinese symbols (Searle, “Can

Computers Think?” 671).

You, in the Chinese room, have all the same input as a speaker of Chinese.  You produce the

same output.  But you lack any understanding of Chinese, and there is no way for you to acquire that

knowledge by merely manipulating formal symbols.  Even if you internalize all the formal rules, the you

lack any understanding about the content of the symbols you are manipulating.

Searle extends the argument to robots.  Even if they are highly complex, essentially they are

doing the same thing that they would be doing if I were controlling the robot from the Chinese room. 

Any syntactic processor, completely describable in terms of formal processing, is necessarily not a mind.

4.4.5. Searle’s Argument

We can present Searle’s argument against functionalism and AI as follows.

1. Computer programs are entirely defined by their formal, syntactic structure.

2. Minds have semantic contents.

3. Syntax is not sufficient for semantics.

C: Computer programs are not sufficient for minds.

Premise 1 is obvious, even definitional.  Premise 2 is also uncontroversial.  We all have minds

and we all process meanings.  The role of the Chinese-room example is to support premise 2.

Regarding AI, the importance of Searle’s argument is that a mechanical model of the mind could

not be a mind.  Any artefact would have to have the causal powers of the mind in order to be a mind. 

Syntax alone seems insufficient.  Though, if our reasoning proceeds according to rules of formal logic,

then it would seem that we can have a purely syntactic description of our mental lives.

What is it about our brains, and perhaps our bodies, that allows us to understand, as well as

process, information?  Searle thinks it has something to do with the way our bodies are connected to the

world.  He insists that the brain, and its causal connections with sensory organs, and the rest of the body,

is essential for understanding our minds.  In other words, consciousness is essentially a biological

phenomenon.  If so, then perhaps the chauvinism of identity theory was right after all.
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Paper Topics

1. Is there artificial intelligence?  How might the defender of strong AI respond to Searle’s criticisms? 

See Dennett, especially.

2. What is a mind?  Compare and contrast two or three theories of the mind.  See Churchland’s first

chapter, and consider Searle’s argument.

3. Is logic purely syntactic?  Consider Frege’s microscope analogy, from the preface to the Begriffsschrift,

and the discussions of semantics from later in the term.
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§5: Adequacy

4.5.1. Choosing Operators for Formal Languages

There are many different possible logical languages and formal systems.  For propositional logic,

we can choose a different notation for variables.  PL has only 26 variables, but we can devise methods to

construct indefinitely many variables by indexing.

P, P', P'', P'''...

1 2 3 4P , P , P , P ,...

We can also choose different logical operators.  PL uses one unary operator, -, and four binary

operators: C, w, e, and /.  There are only four possible unary operators in a bivalent logic (i.e. a logic with

two truth values).  Given one variable, and a truth table of two rows, there are only four possible

distributions of truth values.  Any unary operator will have to produce one of the four tables U1 - U4

U1

á

1 1

1 0

U2

á

1 1

0 0

U3

- á

0 1

1 0

U4

á

0 1

0 0

Only the negation, U3, is useful and has a common name.  U2 just repeats the value of the given

formula, and so is otiose.  We could call U1 a truth operator, since it takes the value ‘1’ whatever the

value of á.  If we want a formula that produces a truth no matter what the values of the component

variables, we can just use any tautology, like EM.

EM P w -P

Similarly, U4 is a falsity operator, always giving the value ‘0’.  If we want a formula to produce

falsity, we can use any contradiction, like PC.

PC P C -P
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There are sixteen possible combinations of truth values for binary operators, sixteen possible

truth tables.  The following table presents all sixteen possible combinations of truth values given two

propositions, á and â.

á â w e / C

1 1 1 1 1 1 0 1 1 1 0 0 0 1 0 0 0 0

1 0 1 1 1 0 1 1 0 0 1 1 0 0 1 0 0 0

0 1 1 1 0 1 1 0 1 0 1 0 1 0 0 1 0 0

0 0 1 0 1 1 1 0 0 1 0 1 1 0 0 0 1 0

Notice that the first column after the variables has ‘1' in all four rows; the next four columns have

three ‘1’s and one ‘0’; the next six columns have all possible distributions of two ‘1’s and two ‘0’s; four

columns of three ‘0’s and one ‘1’ follow; lastly, there is the single column of all ‘0’s.  There are no other

possible distributions of ‘1’s and ‘0’s in a four-row truth table.

Only four of the possible sixteen possible truth tables have names in PL.  We could give names to

others and include them in our language.  But, the more operators we include, the more truth tables we

have to remember.  A language can get clunky and awkward with too many elements.  Furthermore, when

we want to prove theorems about our formal language, it is useful to have as few elements of the language

as possible.

In the other direction, we might want to reduce the vocabulary of our language as far as possible

in order to make our metalinguistic proofs easier.  But, we want to ensure that the expressive capacity of

our language is not reduced.  It’s fine to remove some of the vocabulary as long as there are other ways of

saying what we want to say.  To use an analogy from natural language, we could ban the word ‘bachelor’

from English as long as we still had the words ‘unmarried’ and ‘man’.  But, if we got rid of all ways of

saying that some man is unmarried, then we would not be able to express some propositions.

When designing logical languages and formal systems, then, we have to balance the ease of using

the language with the ease of constructing metalinguistic proofs about the language.  We want to make

sure both that the language is managable and that it allows us to say what we want to say.

4.5.2. Eliminating the Biconditional and Conditional

One natural way to reduce the vocabulary of our language is to eliminate operators, as long as we

can construct statements with the same truth values that those operators produced.  We have seen how to

eliminate the biconditional by defining it in terms of the conditional.  This was the rule we called material

equivalence.  Call a connective superfluous if it can be defined in terms of other connectives.

T1 The biconditional is superfluous.
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To prove T1, we just need to show that ‘á / â’ and ‘(á e â) C (â e á)’ are logically equivalent.

We can do this by method of truth tables.

á / â

1 1 1

1 0 0

0 0 1

0 1 0

(á e â) C (â e á)

 1 1  1 1  1 1  1

 1 0  0 0  0 1  1

 0 1  1 0  1 0  0

 0 1  0 1  0 1  0

Notice that the conditional is superfluous also, according to the rule of material implication.

T2 The conditional is superfluous.

We can prove T2 by the method of truth tables, just as we did for T1.

á e â

1 1 1

1 0 0

0 1 1

0 1 0

- á w â

0 1 1 1

0 1 0 0

1 0 1 1

1 0 1 0

An alternate way of proving T2 uses metalinguistic versions of conditional and indirect proof.  To

show that two statements are logically equivalent, metalinguistically, we show that each entails the other. 

For T2, first we assume: ‘á e â’ is true and show that the truth of ‘-á w â’ follows.  Assume not.  Then

some formula of the form ‘-á w â’ is false.  Then the formula replacing á will have to be true (to make -á

false) and the formula replacing â will have to be false.  But, those values will make ‘á e â’ false,

contradicting our assumption.

Next. we assume ‘-á w â’ is true and show that the truth of ‘á e â’ follows.  Assume that some

formula of the form ‘á e â’ is false.  Then the value of the formula replacing á  must be true and the value

of the formula replacing â must be false.  But, on those values, ‘-á w â’ is false, again contradicting our

assumption.  QED.

We can go back to prove T1 by the same metalinguistic method.  First we assume ‘á / â’ and

show that ‘(á e â) C (â e á)’ follows.  Then, we assume ‘(á e â) C (â e á)’ and show that ‘á / â’ follows. 

I leave the details to the reader.

Both of these methods for proving T1 and T2 produce the same results, since they depend on the

same truth values.  A third method of proving the equivalence of two statements is to derive one from the

other using the rules of inference we introduced in Chapter 2.  For T2, for example, we assume: ‘á e â

and derive ‘-á w â’; then we assume ‘-á w â’ and derive ‘á e â’.  In this case, our proof will use

metalinguistic formulas rather than formulas of PL, but the same rules apply.
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So, as a methodological observation, we have on our hands two distinct notions of logical

equivalence.

1LE Two statements are logically equivalent iff they have the same values in every

row of the truth table.

2LE Two statements are logically equivalent iff each is derivable from the other.

1 2We hope that LE  and LE  yield the same results.  In order to show that this is the case, we must

show that our formal system is sound and complete, which is a topic for another section.

Combining T1 and T2, we discover that any sentence which can be written as a biconditional can

be written in terms of negation, conjunction, and disjunction.  To eliminate the biconditional and the

conditional from a sentence like DB which is naturally translated using the /, we use two steps.  After

regimenting DB directly as a biconditional, we eliminate the biconditional and then get rid of the

conditional.

DB Dogs bite if and only if they are startled.

B / S

(B e S) C (S e B)

(-B w S) C (-S w B)

Two questions arise from these considerations about eliminating operators.  First, how can we be

sure that all sentences can be written with just the five (or, now, three) connectives of PL?  Second, can

we eliminate more connectives?  What is the fewest number of connectives that we need?  We will

answer both questions in the remainder of this section.

4.5.3.  Defining Adequacy and Disjunctive Normal Form

A set of connectives is called adequate if and only if corresponding to every possible truth table

there is at least one sentence using only those connectives.  By “every possible truth table,” I mean every

combination of ‘1’s and ‘0’s in the column under the main operator.  We want our connectives to be

adequate so that we can construct formulas with all possible truth conditions.  If our set of connectives is

adequate, then our propositional logic will be able to say anything that any propositional logic can say.

To give you a taste of what we are after, consider a severely limited adequacy result.

T3 Negation and conjunction are adequate, if we use only one propositional variable.

We can prove T3 by sheer force.  There are only four possible truth tables: 11, 10, 01, 00.  Here

are statements for each of them which use no connectives other than negation and conjunction.

- (á C - á)

1 1 0 0 1

1 0 0 1 0

á

1

0

- á

0 1

1 0

á C - á

1 0 0 1

0 0 1 0

We want to demonstrate the general theorem that the five connectives of PL are adequate for any

number of propositional variables.  By T1 and T2, we know that the five connectives are adequate if, and
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only if, the three (negation, conjunction, and disjunction) are adequate.

In order to prove the general theorem, consider the set of wffs of PL that are in Disjunctive

Normal Form (DNF).  A sentence is in DNF if it is a series of disjunctions, each disjunct of which is a

single letter, a negation of single letters, or a conjunction of simple letters or negations of simple letters. 

A single letter or its negation can be considered a degenerate conjunction or disjunction.  (For the

purposes of this section, we can drop brackets among three or more conjuncts, or three or more disjuncts,

though we still need brackets when conjoining disjunctions or disjoining conjunctions.)  DNF lists some

sentences in DNF.  NDNF lists some sentences that are not in DNF.

DNF P

P C -Q

-P w Q

(P C Q) w (-P C Q)

-P w -Q w (-P C -Q)

NDNF -(P C Q)

P e Q

(P C -Q) w (-P / Q)

(P w Q) C (-P w -Q)

P w -Q w -(P w Q)

Notice that the first and last sentences in NDNF are logically equivalent to related sentences in

DNF.  ‘-(P C Q)’ is logically equivalent to ‘-P w -Q’.  ‘P w -Q w -(P w Q)’ is logically equivalent to ‘P

w -Q w (-P C -Q)’.  These equivalences are easily shown by constructing the appropriate truth tables.

4.5.4. Proving Adequacy and Inadequacy for Familiar Connectives

We have seen that the set of five connectives of PL is adequate if the set of three {-, C, w} is. 

The proof of T4 will show that both sets are indeed adequate.

T4 The set of negation, conjunction, and disjunction {-, C, w} is adequate.

The proof of T4 proceeds by cases.  We will see a way to construct a sentence using only the

three connectives for any possibility of combinations of truth values in any truth table.

For any size truth table, with any number of connectives, there are three possibilities for the

column under the main operator. 

Case 1: Every row is false.

Case 2: There is one row which is true, and every other row is false.

Case 3: There is more than one row which is true.  (Perhaps even all the rows are true.)

For Case 1, we can construct a sentence with one variable in the sentence conjoined with its

negation and each of the remaining variables.  So, if you have variables P, Q, R, S, and T, you would

write, ‘P C -P C Q C S C T’.  If you have more variables, add more conjuncts.  The resulting formula, in

DNF, is false in every row, since each row contains a contradiction.  It uses only conjunction and

negation.
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For Case 2, consider the row in which the statement is true.  We can write a conjunction of the

following statements:

For each variable, if it is true in that row, write that variable.

For each variable, if it is false in that row, write the negation of that variable.

The resulting formula is in DNF (the degenerate disjunction) and is true in only the prescribed

row.  For example, consider a formula with two variables, P and Q, and the column under the main

operator.  The formula may be as complicated as we wish.  We could be considering ‘-(-P w --Q)’ or

‘-[(P w P) e (Q C --Q)]’, each of which yields the given truth table.  We are concerned to construct a

formula, in DNF, which matches the single column under the main operator in any such formula of PL.  

P Q Main operator

1 1 0

1 0 1

0 1 0

0 0 0

We consider the second row only, in which P is true and Q is false.  Our conjunction will be ‘P C

-Q’.  This formula is in DNF and it is logically equivalent, by defnition, to whatever the original sentence

was, no matter which of the five connectives it used.

Also, notice that our sentence in DNF is equivalent to a different statement, ‘-(-P w Q)’; you can

see their equivalence by constructing the truth table.  Many different formulas which will yield the same

truth table.  In fact, there are infinitely many ways to produce each truth table.  For example, one can

always just add pairs of -s to a formula.

For Case 3, we just repeat the method from Case 2 for each row in which the statement is true. 

Then, we form the disjunction of all the resulting formulas.  Again, the resulting formula will be in DNF

and be logically equivalent to the original formula no matter which connectives it used.  Here is an

example.

P Q R Main operator

1 1 1 1

1 1 0 0

1 0 1 0

1 0 0 1

0 1 1 0

0 1 0 0

0 0 1 0

0 0 0 0
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To construct a formula with that truth table, we need to consider only the first and fourth rows.  In

the first row, all variables are true.  In the fourth, ‘P’ is true, but ‘Q’ and ‘R’ are false.  Our resultant

formula will be ‘(P C Q C R) w (P C -Q C -R)’.  Punctuation can easily be added to make the formula well-

formed.  QED.

Given T4 and the methods used in the proofs of Theorems 1 and 2, we can easily prove several

other sets of connectives adequate.

T5 The set {w, -} is adequate.

To prove T5, we use can use the method in T4 to write a formula for any truth table using as

connectives only those in the set {w, C, -}.  But any statement of the form ‘á C â’ is equivalent to one of

the form ‘-(-á w -â)’.  So, we can replace any occurrence of ‘C’ in any formula, according to the above

equivalence.

The proofs of T6 and T7 are just as straightforward.  For T6, we merely require a formula uusing

conjunction and negation which is logically equivalent to ‘á w â’.  T7 is a little trickier.  I leave the proofs

of both to the reader.

T6 The set {C, -} is adequate.

T7 The set {-, e} is adequate.

We have seen that some pairs of connectives are adequate to express any truth table.  But, not all

sets of pairs of connectives are adequate.

T8 The set {e, w} is inadequate.

To show that a set of connectives is inadequate, we can show that there is some truth table that

can not be constructed using those connectives.  Recall that both ‘á e â’ and ‘á w â’ are true when á and â

are both true.  Thus, using these connectives we can never construct a truth table with a false first row. 

{e, w} is inadequate.

All of the sets of single connectives in PL are inadequate.  T9 is an example.

T9 The set {e} is inadequate.

To prove T9, consider the truth table for conjunction.  We want to construct a formula, using e as

the only connective, which yields the same truth table.  Imagine that we have such a formula, and imagine

the smallest such formula.  Since, the only way to get a 0 with e is with a false consequent, the truth table

of the consequent of our formula must either be 1000 or 0000.  Since we are imagining that our formula is

the smallest formula which yields 1000, the consequent of our formula must be a contradiction.  But, the

only way to get a contradiction, using e alone, is to have one already!  Since we can not construct the

contradiction, we can not construct the conjunction.

We will need one more inadequate set for the proof of T13.

T10 The set {-} is inadequate. 

To prove T10, we need only one variable.  The only possible truth tables with one variable and -

are 10 and 01.  Thus, we can not generate 11 or 00.
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4.5.5. Adequacy for New Connectives

Despite the inadequace of our single connectives, there are sets of single connectives which are

adequate.  Consider the Sheffer stroke, ‘|’, which is also called alternative denial, or not-both.

á | â

1 0 1

1 1 0

0 1 1

0 1 0

T11 The set {|} is adequate.

To prove T11, notice that ‘-á’ is logically equivalent to ‘á | á’ and that ‘á C â’ is logically

equivalent to ‘(á | â) | (á | â)’.  By T6, {-, C} is adequate.  So, T11 follows.

 

There is one more adequate single-membered set.  Consider the connective for the Peirce arrow,

‘9’, also called joint denial, or neither-nor.

á 9 â

1 0 1

1 0 0

0 0 1

0 1 0

T12 The set {9} is adequate.

The proof of T12 uses T5 and the equivalence of  ‘-á’ to ‘á 9 á’ and of  ‘á w â’ to ‘(á 9 â) 9 (á 9

â)’.

Both | and 9 were initially explored by C.S. Peirce, though Henry Sheffer gets his name attached

to the former for his independent work on it.  Given that both the Sheffer stroke and the Peirce arrow are

adequate, we could build systems of propositional logic around just those connectives.  Translations

between such logical languages and English would be difficult, and our propositions would get complex

quickly.  We have to balance the virtues of having fewer connectives with the virtues of languages with

which it is easier to work.  We could easily add either the Sheffer stroke or the Peirce arrow to PL; they

would be superfluous just like the material biconditional.
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4.5.6. The Limit of Adequacy

Lastly, we can prove that there are no other single, adequate connectives.

T13: 9 and | are the only connectives which are adequate by themselves.

To prove T13, imagine we had another adequate connective, #.  We know the first rows must be

false, by the reasoning in the proof of T8.  Similar reasoning fills in the last row.

á # â

1 0 1

1 0

0 1

0 1 0

Thus, ‘-á’ is equivalent to ‘á # á’.  Now, we need to fill in the other rows.  If the remaining two

rows are 11, then we have ‘|’.  If the remaining two rows are 00, then we have ‘9’.  So, the only other

possibilities are 10 and 01.  01 yields 0011, which is just ‘-á’.  10 yields 0101, which is just ‘-â’.  By

T10, {-} is inadequate.  QED

Exercises A.  Which of the following sentences are in DNF?

1. (P C -Q) w (P C Q)

2. (P C Q C R) w (-P C -Q C -R)

3. -P w Q w R

4. (P w Q) C (P w -R)

5. (P C Q) w (P C -Q) w (-P C Q) w (-P C -R)

6. (-P C Q) C (P C R) w (Q C -R)

7. (P C -Q C R) w (Q C -R) w -Q

8. -(P C Q) w (P C R)

9. P C Q

10. -P

Exercises B

1. Use the metalinguistic, semantic form which I used to prove T2 to prove T1.

2. Prove T6.

3. Prove T7.

Solutions to Exercises A

Only 4, 6, and 8 are not in DNF, though 8 could be quickly put into DNF
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Paper Topics

1. While there are no other adequate single sets of connectives, there are other binary connectives.  Are

there other adequate pairs?  If so, which?  If not, why not?

2. What are the meanings of the other possible binary connectives?  Can a good argument be made to use

any others in translation from natural language into a formal language?

3. Why are there only unary and binary connectives?

4. Try to construct a formal language with the same expressive powers as PL but with with none of the

standard connectives.

VIII. Suggested Reading

Susan Haack, Philosophy of Logics, Chapter 3, has a discussion of adequacy.

Geoffrey Hunter, Metalogic.  The results above are mostly contained in §21.  The references

below are mostly found there, as well.  His notation is a bit less friendly, but the book is wonderful, and

could be the source of lots of papers.

Elliott Mendelson, Introduction to Mathematical Logic.  Mendelson discusses adequacy in §1.3. 

His notation is less friendly than Hunter’s, but the exercises lead you through some powerful results.

Emil Post, “Introduction to a General Theory of Elementary Propositions”, reprinted in van

Heijenhoort.  The notation is different, but the concepts are not too difficult.  It would be interesting to

translate into a current notation, and present some of the results.

Several papers from C.S. Peirce initially explored the single adequate connectives.  They might

be fun to work through.  I can give you references.
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§6: Three-Valued Logics

4.6.1. Eight Motivations for Three-Valued Logics

We have been both working with our system of propositional logic, in the object language, and

interpreting our system, doing semantics in a metalanguage.  The semantics for PL mainly consists in the

assignments of truth values to propositional variables.  We represent these assignments using the truth

tables.  For the most part, in this book, we use a bivalent interpretation of our logic.  A bivalent semantics

is one with just two truth values: 1 and 0.

For various reasons, some logicians have constructed semantics for propositional logic with more

than two truth values.  These semantics divide into two classes.  The first type of non-bivalent semantics

uses three truth values.  The second type uses more than three truth values.  Most of the interpretations

which use more than three truth values use infinitely many truth values.  We can take ‘0’ for absolute

falsity, ‘1’ for absolute truth, and all real numbers between 0 and 1 as different truth values landing

somewhere between absolute truth and absolute falsity.  Such semantics are called fuzzy logics.

Three-valued interpretations are generally called three-valued logics.  That name is infelicitous,

since the difference between bivalent and three-valued interpretations comes not in the object-language

logic but in the metalanguage semantics.  Still, I will use the term ‘three-valued logic’ for consistency

with common usage.  In this section, we will look at eight motivations, M1-M8, for three-valued logics. 

Some of these topics are examined in depth elsewhere in this text and so the discussion here will be brief.

M1. Mathematical sentences with unknown truth values

M2. Statements about the future

M3. Failure of presupposition

M4. Nonsense

M5. Programming needs

M6. Semantic paradoxes

M7. The paradoxes of the material conditional

M8. Vagueness

M1. Mathematical sentences with unknown truth values

Some philosophers introduce a third truth value to classify sentences whose truth values are

unknown to us.  In particular, mathematical sentences like GC seem puzzling.

GC Every even number greater than four can be written as the sum of two odd

primes.

GC is called Goldbach’s conjecture, though Euler actually formulated it in response to a weaker

hypothesis raised by Goldbach in 1742.  Goldbach’s conjecture has neither been proved true nor

disproved.  It has been verified up to very large values.  There are websites at which you can test any

number.  As of this writing, there is a computer working on larger and larger numbers to verify that GC

holds; it has passed 10 .18

There are, also, inductive arguments which make mathematicians confident that Goldbach’s

conjecture is true.  As the numbers grow, the number of different pairs of primes that sum to a given

number (called Goldbach partitions) tends to grow.  Even for the relatively small numbers between

90,000 and 100,000, there are no even numbers with fewer than 500 Goldbach partitions.  It would be

extremely surprising if the number suddenly dropped to 0.  Still, many smart mathematicians have tried

and failed to devise a proof of GC.

We might take Goldbach’s conjecture to be neither true nor false.  We might do so, especially, if

http://wims.unice.fr/wims/wims.cgi?module=tool/number/goldbach.en
http://wims.unice.fr/wims/wims.cgi?module=tool/number/goldbach.en
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we think that mathematics is constructed, rather than discovered.  If and when some one proves it, or its

negation, then we could apply a truth value to the proposition.  Until we have a proof, we could take

Goldbach’s conjecture, and other unproven mathematical claims, to lack a truth value.

M2. Statements about the future

Mathematical sentences like GC are alluring for those who favor three-valued logics.  But, many

mathematicians believe that GC is either true or false.  The reason we can not decide whether it is true or

false is that we have limited intelligence.  But, the sentence has a definite truth value.  Such sentiments

are not as strong in cases like PT.

PT There will be a party tomorrow night at Bundy Dining Hall.

Maybe there will be a party in Bundy tomorrow; maybe there will not be.  Right now, we can not

assign a truth value to PT.

The classic discussion of the problem in PT, generally labeled the problem of future contingents,

may be found in Aristotle’s De Interpretatione regarding a sea battle.  Since PT is contingent, we can, at

this moment, neither assert its truth nor its falsity.

In things that are not always actual there is the possibility of being and of not being; here both

possibilities are open, both being and not being, and consequently, both coming to be and not

coming to be (De Interpretatione §9.19a9-13).

We know that one of the two truth values will apply, eventually.  Either there will be a party

tomorrow night or there will not be.  Right now, though, PT seems to lack a truth value.

It is necessary for there to be or not to be a sea-battle tomorrow; but it is not necessary for a sea-

battle to take place tomorrow, nor for one not to take place - though it is necessary for one to take

place or not to take place (De Interpretatione §9.19a30-33).

If the claim that there will be a sea-battle tomorrow has a truth value now, then the event is not

contingent; it is already determined.  Since the future is not determined, the truth values of statements

about the future should also be undetermined.

We can understand Aristotle’s claim better by considering the following three claims.

EM Either there will be a sea-battle tomorrow or there will not be a sea-battle

tomorrow.

EM1 There will be a sea-battle tomorrow.

EM2 There will not be a sea-battle tomorrow.

Aristotle wants to call EM true, indeed necessarily true, while withholding truth values from EM1

and EM2.  If EM1 and EM2 are not true, and we only have two truth values, then they must be false.  If

EM1 and EM2 are false, we should be willing to assert their negations.

EM1' It is not the case that there will be a sea-battle tomorrow.

EM2' It is not the case that there will not be a sea-battle tomorrow.

EM1' and EM2' represent our acknowledgment of the contingency of the event.  But, taken

together, EM1', and EM2' form a contradiction.
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EMC  -P C --P

- P C - - P

0 1 0 1 0 1

1 0 0 0 1 0

If we have a third truth-value, we can assert both EM1' and EM2' without contradiction.  In a

three-valued logic, denying that a statement is true does not entail that it is false.  It can be neither true nor

false.

M3. Failure of presupposition

Neither KB nor KN are true propositions.

KB The king of America is bald.

KN The king of America is not bald.

But, KN looks like the negation of KB.  If we regiment KB as ‘P’, we should regiment KN as

‘-P’.  In a bivalent logic, since ‘P’ is not true, we must call it false, since we have only two truth values. 

Assigning the value ‘false’ to ‘P’ means that ‘-P’ should be assigned ‘true’.  But, KN is false.

The problem is that in this case we want both a proposition and its negation to be false.  But in a

bivalent logic, the negation of a false proposition is a true proposition.  Thus, we can never, in a bivalent

logic, deny both a statement and its negation, as we wish to do with KB and KN.

We think that KB and KN are both false because they both contain a false presupposition.  FP1 -

FP3 all contain a failure of presupposition.  FP3 contains a failure of presupposition even though it is not

declarative.  

FP1 The woman on the moon is six feet tall.

FP2 The rational square root of three is less than two.

FP3 When did you stop beating your wife?

One response to the problem of presupposition failure in propositions is to call such propositions

neither true nor false.

M4. Nonsense

The distinction between syntax and semantics can be a motivation to adopt a third truth-value. 

The syntax of a formal language tells us whether a string of symbols of the language is a wff.  The

correlate of syntax, in natural language, is grammaticality.  But, not all grammatical sentences are

sensible.  We might consider some grammatical but nonsensical sentences to lack truth-values.

GN1 Quadruplicity drinks procrastination. (From Bertrand Russell)

GN2 Colorless green ideas sleep furiously. (From Noam Chomsky)

In the syntax of English, GN1 and GN2 are well-formed.  But, their well-formedness does not

entail that we can assign truth values to them.  If we adopt a three-valued logic, we can assign them the
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missing truth value and save falsity for sentences that are sensible as well as gramamtical.

M5. Programming needs

Logic is essential to the program of a computer.  At the most basic level, computer circuits are

just series of switches which can either be open or closed.  To represent the circuit, we use logic. 

Roughly, electrons can pass through a switch if it is closed and can not pass through if it is open.  To

interpret the state of the circuit, we take a closed switch to be true and an open switch to be false.  We

might want to leave the values of some variables unassigned, during a process.  For example, we might

want to know how a system works without knowing whether a given switch is open or closed.  A three-

valued logic can thus model closed switches (true), open switches (false), and switches which we do not

know whether they are open or closed (undetermined).

M5 is merely a pragmatic motivation, rather than a philosophical one, for developing three-

valued logics.  It is, though, a reason to explore the merits of such semantics.  The development of a

three-valued semantics is a formal, technical project.  We can wonder about the philosophical motivations

for and applications of our logic and its semantics independently of their construction.

M6. Semantic paradoxes

There are a variety of semantic paradoxes.  The most famous is called the liar.

L L is false.

L is an example of a paradoxical sentence.  If L is true, then L is false, which makes L true, which

makes L false...  L seems to lack a definite truth value, even though it is a perfectly well-formed sentence.

L is often called Epimenides’ paradox.  Epimenides was a Cretan to whom the statement that all

Cretans are liars is attributed.  Since assigning 1 or 0 to L leads to a contradiction, we might assign it a

third truth value.

M7. The paradoxes of the material conditional

Statements of the form MC1 - MC3 are sometimes called paradoxes of the material conditional. 

We call them paradoxes, a name which is probably too strong, beacuse they turn out to be logical truths

even though they are not obvious.

MC1 á e (â e á)

MC2 -á e (á e â)

MC3 (á e â) w (â e á)

The paradoxes of the material conditional have awkward consequences.  MC1 says,

approximately, that if a statement is true, then anything implies it.  For, the truth table for the material

conditional is true on every line in which the consequent is true.  MC2 says that if a statement is false, its

opposite entails any other statement.  MC3 says that for any statement, â, either any other statement

entails it, or it entails any statement.  Every statement must be either true or false.  If a given statement is

true, then any statement entails it.  If a given statement is false, then it entails any statement. 

On the one hand, MC1 - MC3 are logical truths.  We certainly can not call their instances false. 

On the other hand, their instances are not the kinds of sentences that some people feel comfortable calling

true.  So, we might use a third truth value for them.
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M8. Vagueness

As a last motivation for three-valued logics, consider the phenomenon of vagueness.  Many

predicates admit of borderline, or vague, cases.  For example, consider baldness.  There are paradigm

instances of baldness which are incontrovertible.  There are also paradigm instances of non-baldness. 

But, there are also cases in which we don’t know what to say.

V1 Tyra Banks is bald.

V2 Richard Jenkins is bald.

V3 Devendra Banhart is bald.

V1 is true; V3 is false.  But between Tyra Banks and Devendra Banhart, there is a penumbra.  We

could, if we wish, give V2 a third truth value.  More compellingly, we could apply a logic in which there

are infinitely many truth values to this case.  To do so, we could assign a value of 0 to V3, and a value of

1 to V1.  Then, we can assign any real-number between 0 and 1, say .3, to V2.

4.6.2 Three-Valued Logics

The rules for determining truth values of formulas in a logic are called the semantics.  We

provided semantics for propositional logic by constructing truth tables.  Since we used only two values,

true and false, our semantics is called two-valued.  Our two-valued semantics is also called classical

semantics  If we want to adopt a third truth value, which we might call unknown, or indeterminate, we

must revise all the truth tables.  I will call the third truth value indeterminate, and use the Greek letter é to

indicate it.  Remember, the idea is that we can ascribe é to sentences which lack a clear truth value.

There are two options for how to deal with unknown or indeterminate truth values in the new

semantics.  First, one could claim that any indeterminacy among component propositions creates

indeterminacy in the whole.  This the principle underlying Bochvar’s semantics, which is sometimes

called Weak Kleene semantics.  Second, one could try to ascribe truth values to as many formulas as

possible, despite the indeterminate truth values.  For example, a conjunction with one false conjunct could

be ascribed falsity whether the other conjunct is true, false, or unknown.  This is the principle underlying

Strong Kleene semantics and Lukasiewicz semantics.

We proceed to look at these three different three-valued semantics.  We will look at: 1. The rules

for each; 2. How the new rules affect the logical truths (tautologies); and 3. How the new rules affect the

allowable inferences (valid arguments).  To show the semantics, I will present truth tables for the standard

connectives.  For simplicity, I will ignore the biconditional.
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Bochvar semantics (B)

á -á

1 0

é é 

0 1

á C â

1 1 1

1 é é 

1 0 0

é é 1

é é é

 é é 0

0 0 1

0 é é

0 0 0

á w â

1 1 1

1 é é

1 1 0

é é 1

é é é

é é 0

0 1 1

0 é é

0 0 0

á e â

1 1 1

1 é é

1 0 0

é é 1

é é é

é é 0

0 1 1

0 é é

0 1 0

In Bochvar semantics, no classical tautologies come out as tautologies.  Consider, under Bochvar,

‘P e P’ and ‘P e (Q e P)’. 

P e P

1 1 1

é é é

0 1 0

P e (Q e P)

1 1 1 1 1

1 é é é 1

1  1 0 1 1

é é 1 é é

é é é é é

é é 0 é é

0 1 1 0 0

0 é é é 0

0 1 0 1 0

These two classical tautologies, and all others, do not come out false on any line on Bochvar

semantics.  But, they do not come out as true on every line.  This result is generally undesirable, since the

classical tautologies seem pretty solid.  Tautologies are also known as logical truths.  They are the

theorems of the logic.  

For those motivated by the paradoxes of the material conditional, Bochvar semantics could be

tempting.  Other systems of logic, called relevance logics, attempt to keep most classical logical truths,
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but eliminate the paradoxes of material implication.  Unfortunately, Bochvar semantics seems too strong a

reaction to the oddities of those so-called paradoxes; it eliminates all classical tautologies.

One solution to the problem of losing logical truths in Bochvar semantics would be to redefine

‘tautology’ as a statement which never comes out as false.  Redefining ‘tautology’ in this way, though,

weakens the concept, making it less useful

Next, consider what Bochvar semantics does to validity.  We defined a valid argument as one for

which there is no row in which the premises are true and the conclusion is false.  We could have defined a

valid argument as one for which there is no row in which the premises are true and the conclusion is not

true.  Classically, these two definitions are equivalent.  But, in three-valued semantics, they cleave.  If we

take a row in which the premises are true and the conclusion is indeterminate as a counterexample to an

argument, as Bochvar did, then some classically valid inferences come out invalid.

Under classical semantics, ‘P  / Q w P’ is a valid inference.

P // Q w P

1 1 1 1

1 0 1 1

0 1 1 0

0 0 0 0

Under Bochvar semantics, the argument comes out invalid.  The second row is a counterexample.

P // Q w P

1 1 1 1

1 é é 1

1 0 1 1

é 1 é é

é é é é

é 0 é é

0 1 1 0

0 é é 0

0 0 0 0

Bochvar semantics proceeds on the presupposition that any indeterminacy infects the whole.  It

thus leaves the truth values of many formulas undetermined.  But, we might be able to fill in some of the

holes.  That is, why should we consider the disjunction of a true statement with one of indeterminate truth

value to be undetermined?  Or, why should we consider the conditional with an antecedent of

indeterminate truth value to itself be of indeterminate truth value, if the consequent is true?  Whatever

other value we can assign the variables with unknown truth value, both sentences will turn out to be true.
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Kleene’s semantics leaves fewer rows unknown.

Kleene semantics (K3)

P -P

1 0

é é

0 1

P C Q

1 1 1

1 é é

1 0 0

é é 1

é é é

é 0 0

0 0 1

0 0 é

0 0 0

P w Q

1 1 1

1 1 é

1 1 0

é 1 1

é é é

é é 0

0 1 1

0 é é

0 0 0

P e Q

1 1 1

1 é é

1 0 0

é 1 1

é é é

é é 0

0 1 1

0 1 é

0 1 0

Kleene semantics has a certain intuitiveness.  But, in order to compare Bochvar to Kleene

properly, we should look at the differences on logical truths and inference patterns.  Consider the same

two tautologies, ‘P e P’ and ‘P e (Q e P)’ under Kleene semantics:

P e P

1 1 1

é é é

0 1 0

P e (Q e P)

1 1 1 1 1

1 1 é 1 1

1  1 0 1 1

é é 1 é é

é é é é é

é 1 0 1 é

0 1 1 0 0

0 1 é é 0

0 1 0 1 0

While many more of the rows are completed, the statements still do not come out as tautologous,

under the classical definition of ‘tautology’.  Lukasiewicz, who first investigated three-valued logics, tried

to preserve the tautologies.
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Lukasiewicz semantics (L3)

There is only one difference between Kleene semantics and Lukasiewicz semantics, in the fifth

row of the truth table for the conditional.

P -P

1 0

é é

0 1

P C Q

1 1 1

1 é é

1 0 0

é é 1

é é é

é 0 0

0 0 1

0 0 é

0 0 0

P w Q

1 1 1

1 1 é

1 1 0

é 1 1

é é é

é é 0

0 1 1

0 é é

0 0 0

P e Q

1 1 1

1 é é

1 0 0

é 1 1

é 1 é

é é 0

0 1 1

0 1 é

0 1 0

One might wonder how we might justify calling a conditional with indeterminate truth values in

both the antecedent and consequent true.  For, what if the antecedent turns out true and the consequent

turns out false?  Put that worry aside, and look at what this one small change does.

P e P

1 1 1

é 1 é

0 1 0

P e (Q e P)

1 1 1 1 1

1 1 é 1 1

1  1 0 1 1

é 1 1 é é

é 1 é 1 é

é 1 0 1 é

0 1 1 0 0

0 1 é é 0

0 1 0 1 0

Voila!  L3 retains many of the classical tautologies that B and K3 lost.  In fact, L3 does not get all
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classical tautologies, including the law of excluded middle, ‘P w -P’.

P w - P

1 1 0 1

é é é é 

0 1 1 0

While excluded middle still does not come out tautologous, that is a law that some folks would

like to abandon, anyway.

The fact that L3 recaptures many classical tautologies is advantageous.  It remains to be shown

that the change in semantics is warranted.  Is it acceptable to call true a conditional whose antecedent and

consequent are both of the third truth value, undetermined or unknown or indeterminate?  The

justification for L3 over K3 seems impossible from the bottom up.

The lesson of Lukasiewicz semantics is that we need not give up classical tautologies, logical

truths, to have a three-valued logic.  The fewer changes we make to the set of logical truths, the less

deviant the logic is.  But, the semantics which allows us to retain these logical truths may not be as pretty

as we would like.

Lastly, consider the effect on validity of moving from Bochvar to Kleene or Lukasiewicz.

Consider again the argument: ‘P  / Q w P’.

Bochvar

P // Q w P

1 1 1 1

1 é é 1

1 0 1 1

é 1 é é

é é é é

é 0 é é

0 1 1 0

0 é é 0

0 0 0 0

counter-example in row 2

Kleene

P // Q w P

1 1 1 1

1 é 1 1

1 0 1 1

é 1 1 é

é é é é

é 0 é é

0 1 1 0

0 é é 0

0 0 0 0

valid - no counter-example

Lukasiewicz

P // Q w P

1 1 1 1

1 é 1 1

1 0 1 1

é 1 1 é

é é é é

é 0 é é

0 1 1 0

0 é é 0

0 0 0 0

valid - no counter-example

Both Kleene and Lukasiewicz semantics thus maintain some of the classical inference patterns

which are lost in Bochvar semantics.
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4.6.3 Problems with Three-Valued Logics

All three-valued logics abandon some classical tautologies and classically valid inference

patterns.  This result may be acceptable, depending on one’s motivation for adopting a three-valued logic. 

But, it is not clear that all the problems that motivated three-valued logics can be solved by adopting

three-valued logics.

For example, Bochvar hoped that his semantics would solve the problems of the semantic

paradoxes.  The liar sentence can be given a truth value in Bochvar semantics without paradox.  That’s

good.  But consider SL, the strengthened liar.

SL SL is not true

Suppose SL is true. Then what it says, that SL is not true, must hold.  So, SL is not true.  It might

be false or it might be undetermined.  In either case, SL, because it says that SL is not true, turns out to be

true.  The paradox recurs.  Adopting the three-valued logic doesn’t get rid of the strengthened liar

paradox.

Another worry about three-valued logics concerns the interpretation of the third value.  Thinking

of it as unknown, for example, seems to involve a conceptual confusion.  ‘Unknown’ might be

understood not as a third truth value, but as the lack of a truth value.  Instead of filling in such cells in the

truth table, we could just leave them blank.

Leaving certain cells of the truth table blank is part of what is called the truth-value gap approach. 

A truth table some of whose cells are left blank is called a partial valuation: only some truth values of

complex propositions are computed on the basis of the truth values of component propositions.  Faced

with partial valuations, the logician may consider something called a supervaluation.  A supervaluation

considers the different ways to complete partial valuations and classifies formulas and arguments

according to the possibilities for completion.  Supervaluations can, in certain cases, recapture some of the

missing values in a partial valuation.

One serious worry about three-valued logics is called the change of logic, change of subject

argument.  This argument comes from Quine.  The basic idea of the argument is that in order to disagree

with someone, you have to at least agree on what you are disagreeing about.  There has to be some

common ground on which you can stand, to argue, or else you are not really disagreeing at all.

Consider two terms, and their definitions, which I will stipulate.

1Chair desk chairs, dining room chairs, and such, but not recliners or bean bag chairs

2 1Chair all chair  objects, and also recliners and bean bag chairs

1Now, consider one person, who uses ‘chair’ as chair  and another person who uses ‘chair’ as

2chair .  Imagine these two people talking about a bean bag chair.  Person 1 affirms ‘that’s a chair’, while

Person 2 denies that sentence.  Since they are using the same term, it looks like they are disagreeing.  But

they are not really disagreeing about whether the bean bag chair is a chair.  They are disagreeing about

1what ‘chair’ means.  They are both correct in their claims about the bean bag.  The bean bag is a chair

2and is not a chair .  What looks like a disagreement is not really a disagreement; the subject has been

changed.

Quine presented the change of logic, change of subject argument in response to a proposal,

related to the introduction three-valued logics, to allow some contradictions in one’s language.  The

problem with accepting contradictions is that they lead to explosion, the inferential process by which any

proposition follows from a contradiction.  Those who attempt to embrace contradictions have to find a

way to block explosion.
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Perhaps, it is suggested, we can so rig our new logic that it will isolate its contradictions and

contain them.  My view of this dialogue is that neither party knows what he is talking about. 

They think they are talking about negation, ‘-’, ‘not’‘ but surely the notation ceased to be

recognizable as negation when they took to regarding some conjunctions of the form [‘P C -P’] as

true, and stopped regarding such sentences as implying all others.  Here, evidently, is the deviant

logician’s predicament: when he tries to deny the doctrine he only changes the subject (Quine,

Philosophy of Logic 81).

If we are considering debates over the correct logic, even claims of what it means to affirm or

deny a sentence are under discussion.  Debates over the correct logic seem to be more like the

1 2disagreement between chair  and chair .  The disputants do not agree on the terms they are using, and so

are talking past each other.

Imagine we are linguists, and we are headed to a newly-discovered alien planet.  We have to

translate a completely new language into English.  We start by assuming that the aliens obey the rules of

logic.  If we were to propose a translation of the alien language on which the aliens often made statements

that translated into the form of ‘P C -P’, we would not assume that these beings are often contradicting

themselves.  We would revise our translation to make it more charitable.  We take the laws of logic as

fundamental.  We use them as common ground on which to base our translations.  If we hypothesize that

the native is asserting a contradiction, we take that to be evidence against our translation rather than

evidence against the native’s intellectual capacity, for example.

We need logic to serve as a starting point for the translation.  We need common ground even to

formulate disagreement.  If we disagree about the right logic, then we have merely changed the subject.

4.6.4 Avoiding Three-Valued Logics

I introduced three-valued logics in order to respond to some problems which arose with classical

logic.

M1. Mathematical sentences with unknown truth values

M2. Statements about the future

M3. Failure of presupposition

M4. Nonsense

M5. Programming needs

M6. Semantic paradoxes

M7. The paradoxes of the material conditional

M8. Vagueness

I mentioned that three-valued logics does not solve the problems of the semantic paradoxes. 

There are ways for the classical logician to deal with all of these problems, anyway.  I will not discuss

each of them, here.  But, here are a few hints to how to solve them.

M1, concerning sentences with unknown truth values and M2, concerning propositions referring

to future events, are related.  In both cases, we can blame ourselves, rather than the world, for our not

knowing the truth value.  Thus, we can say that Goldbach’s conjecture is either true or false, but we just

do not know which.  Similarly, we can say that either there will be a party at Bundy Dining Hall

tomorrow, or there will not.  We need not ascribe a deep problem to truth values.  Such sentences have

truth values.  We just do not know them.

Proponents of classical logic may deal with problems about time by appealing to a four-

dimensional framework.  We can take a God’s-eye point of view and think of the world as a completed
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whole, from the beginning until the end of time.  Going four-dimensional, we add a time-stamp to all our

claims.  Instead of saying that it is snowing, say, we say that it is snowing at 4:37pm, Eastern Time, on

December 31, 2011.  Then, a statement about the future is true if it ends up true at the time.  We need not

see the logic as committing us to a determined future.  We just know that statements about future events

will eventually have truth values.  There are also tense logics, which introduce temporal operators but

maintain classical semantics, to help with time.

For failures of presupposition, M3, we can use Bertrand Russell’s analysis of definite

descriptions.  In §3.11, there is a more-precise analysis of Russell’s solution.  For now, consider again an

example of failure of presupposition.

WM The woman on the moon is six feet tall.

We can analyze WM to make the assumption explicit.  We can re-cast WM as WM’

WM’ There is a woman on the moon and she is six feet tall.

WM’ has the form ‘P C Q’.  ‘P’ is false, so ‘P C Q’ is false.  We can similarly recast WMN as

WMN’.

WMN The woman on the moon is not six feet tall.

WMN’ There is a woman on the moon and she is not six feet tall.

We regiment WMN’ as ‘P C -Q’.  P is false, so ‘P C -Q’ is false.  We thus do not have a situation

in which the same proposition seems true and false.  In both cases, P is false, so the account of the falsity

of both sentences WM and WMN can be the same.  We thus lose the motivation for introducing a third

truth value.

M5 provides a reason for exploring the technical work of three-valued logics.  But it gave us no

philosophical reason for adopting them.  For M4, nonsense, and M6, paradoxes, and M8, vagueness, we

can deny that such sentences express propositions.  We may claim that just as some strings of letters do

not form words, and some strings of words do not form sentences, some grammatical sentences do not

express propositions.  This would be the same as to call them meaningless.  This solution is a bit

awkward, since it does seem that ‘This sentence is false’ is perfectly meaningful.  But if it prevents us

from having to adopt three-valued logics, it might be a useful move.

Exercises

1. Construct truth tables for each of the following propositions, under classical semantics and each of the

three three-valued semantics (Bochvar, Kleene, Lukasiewicz).  Compare the results. 

1. P w -P

2. P e P

3. (P e Q) / (-P w Q)

Note: you can construct the truth table for the biconditional by remembering that ‘P/Q’

is logically equivalent to ‘(P e Q) C (Q e P)’
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2. Use the indirect method of truth tables to test each of the following arguments for validity, under

3 3classical semantics and each of the three three-valued semantics (B, K , and L ).  Compare the results.

1. P e Q

P /� Q

2. P /� -(Q C -Q)

3. P /� P w Q

Paper Topics

1. Compare Bochvar semantics, Kleene semantics, and Lucasiewicz semantics.  What differences do the

different semantics have for classical tautologies?  What differences do they have for classical inferences

(validity and invalidity)?  Be sure to consider the semantics of the conditional.  Which system seems most

elegant?  This paper will be mainly technical, explaining the different semantics and their results.

2. Do three-valued logics solve their motivating problems?  Philosophers explore three-valued logics as a

way of dealing with various problems, which I discuss in these notes.  Consider some of the problems and

show how one of the systems tries to resolve the problem.  For this paper, I recommend, but do not insist,

that you focus on Kleene’s semantics.  If you try to deal with Epimenides, and the semantic paradoxes,

you might want to focus just on that problem.

3. Bochvar introduced a new so-called assertion operator, |.  Use of this operator allows us to recapture

analogs of classical tautologies within Bochvar semantics.  Describe the truth table for this operator. 

Show how it allows us to construct tautologies.  How does the new operator affect the set of valid

formulas?  (It can be shown that on Bochvar semantics, any argument using only the standard operators

which has consistent premises, and which contains a sentence letter in the conclusion that does not appear

in any of the premises, is invalid.  You might consider this result, and the effect of the new operator on it.)

4. Quine, in Chapter 6 of Philosophy of Logic, calls three-valued logic deviant, and insists that to adopt

three-valued logic is to change the subject.  Why does Quine prefer classical logic?  Consider his maxim

of minimum mutilation. Who can deal better with the problems, sketched at the beginning of these notes,

that motivate three-valued logic. (You need not consider all of the problems, but you should provide a

general sense of how each approach works.)

5. Do assertions about the future have a truth value?  Consider both the bivalent and the three-valued

alternatives.  You might compare Aristotle’s view with that of Leibniz, who says that contingent truths

are not necessary, even though they are certain.  Alternatively, you could look at Haack’s discussion of

the way Aristotle’s suggestion was pursued by Lukasiewicz.  If you want to pursue an interesting

technical discussion, Prior’s “Three-Valued Logic and Future Contingents” is written in Polish notation.

6. How should we understand the sentence ‘the king of America is not bald’?  Consider Russell’s theory

of descriptions, and contrast it with Strawson’s response.  You might also consider the questions whether

there a difference between logical and grammatical form, and, whether ordinary language has a logic.

7. Are there any people?  Consider the problem of vagueness, and the many-valued approach to its

solution.
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§7: Truth and Liars

Philosophy is sometimes characterized as the pursuit of truth in its most abstract form.  Given that

characterization, it may come as no surprise that philosophers spend a fair amount of time thinking about

the nature of truth itself.  Unfortunately, philosophical discussions of truth can quickly become difficult

and obscure.  There is a lot of technical work on truth centering around responses to semantic paradoxes. 

There are also more fundamental questions about the nature of truth and our ability to know what is true. 

Technical work on the logic of truth is sophisticated, requiring subtle distinctions between object

languages and metalanguages, sometimes many different metalanguages.  Less-technical discussions of

truth often rely on interpretations of the technical results.

We will start with a general overview of three non-technical theories of truth, asking whether

truth is a property, and, if so, what kind of property.  Then, we will look at the semantic paradoxes, and

ask why they are important.  Lastly, we examine Tarski’s important work on truth, and his solution to the

problems raised by the paradoxes.

4.7.1. Truth

The standard concept of truth is called the correspondence theory.  The correspondence theory of

truth traces back at least to Plato, though it is traditional to ascribe it to Aristotle.

To say of what is that it is not, or of what is not that it is, is false, while to say of what is that it is,

and of what is not that it is not, is true (Metaphysics, 1011b25).

According to the correspondence theory of truth, truth is a relation between words and the world. 

The truth of a sentence consists in its agreement with, or correspondence to, reality.

One worry about the correspondence theory is that we do not seem to have any extra-linguistic

way to apprehend reality.  If I want to compare, say, an elephant to a picture of an elephant, or a picture

of a sculpture of an elephant to a picture of an elephant, I can hold both of them in front of me, gazing

from the one to the other.

If I want to compare my words to the world, I have to apprehend, on the one side, what the words

mean, and on the other, the world.  But, it has seemed to some philosophers, I only apprehend the world

mediately, through my ideas of it.  I do not have any access to the world as it is in itself.

Those of you who have worked through the epistemology of the modern era, especially the work

of Locke and Berkeley and Hume, should understand the problem here.  The correspondence theory says



Marcus, What Follows, page 263

that truth is a matching between words and the world.  But it seems as if I am unable to compare my

words or my ideas to an independent world to decide whether there is a correspondence between them.  I

can only know about one side of the equation.  I might be able to see whether my words match my ideas,

but I am cut off from the world.

In response to such problems with the correspondence theory of truth, some philosophers have

adopted coherence theories.  According to coherentism, the truth of a sentence is a relation to other beliefs

we hold.  That relation is ordinarily taken to be consistency: a sentence is true if it is consistent with other

sentences we hold.  Different people apprehend the world in different ways, depending on their

experiences, expectations, physiology, and background beliefs.  The coherentist despairs of any method

of resolving these inconsistencies among people and their beliefs.

For example, suppose that I believe in a traditional, monotheistic God and that you do not.  GO

will be true for me, since it coheres with my other beliefs.

GO God is omniscient.

In contrast, GO will be false for you, since it conflicts with your other beliefs.  Since different

people hold different beliefs, the coherence-truth of a sentence depends on the person who is considering

the sentence.  Coherence theories thus lead to relativism about truth.  My truth will differ from your truth

if my belief set is incompatible with yours.

The correspondence and coherence theories of truth each provide a univocal analysis of ‘truth’. 

Insofar as they entail that there is a property called truth, they are both what are sometimes called

inflationary theories of truth.  Inflationary theories are distinguished from deflationary theories of truth. 

Deflationary theories of truth, developed in the last century, are often called minimalist theories. 

Deflationism has many proponents, and there are different ways of understanding and explaining the

view.  But deflationists are united in the belief that there is no essence to truth, no single reduction of

truth to a specific property like correspondence or consistency.

Some deflationists claim that truth is just a device for simplifying long conjunctions.  If you said

a lot of smart things at the party, I could list them all.  Or, I could just assert LN.

LN Everything you said last night was true.

In LN, ‘true’ is eliminable by a long set of sentences listing all of what you said last night.  Such

eliminations are, according to the deflationist, the central purpose of ‘truth’.  Otherwise, ‘truth’ is merely

a redundant term.  Indeed, deflationism is often called a redundancy theory of truth: to say that ‘snow is

white’ is true is just to say, redundantly, that snow is white.

Both inflationists and deflationists agree that a minimal condition for truth is what we call the T-

schema, or Convention T, following Tarski.

CT p is true if and only if x

In CT, ‘p’ is the name of any sentence, and x are the truth conditions of that sentence.  We can

use CT to specify the truth conditions for any sentence.  Here are some instances of the T-schema.

CT1 ‘The cat is on the mat’ is true if and only if the cat is on the mat.

CT2 ‘2+2=4’ is true if and only if 2+2=4

CT3 ‘Barack Obama  is president’ is true if and only if the husband of Michelle

Obama and father of Sasha Obama and Malia Obama is head of the executive

branch of the United States of America.
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Note that, as in CT3, the truth conditions on the right of the ‘if and only if’ need not be expressed

in the same terms as the sentence on the left.  We can even use a different language for the sentence and

for its truth conditions, as in CT4.

CT4 ‘El gato está en el alfombrilla’ is true if and only if the cat is on the mat.

You could, in principle, understand the truth conditions of CT4 without understanding the

meaning of the Spanish sentence on the left side.

Inflationists and deflationists disagree about whether CT is all there is to know about truth.  The

inflationist believes that there are explanations of the concept of truth inherent in the truth conditions on

the right side of CT.  For the correspondence theorist, ‘the cat is on the mat’ is true because there is a cat,

which corresponds to ‘the cat’, and there is a mat, which corresponds to ‘the mat’, and there is a relation,

being on, which the cat and the mat satisfy, or in which they stand.  All other instances of the T-schema

will have similar explanations in terms of the correspondence of words to worlds.

The deflationist, in contrast, believes that the T-schema is all there is to know about truth, and

that there is no single kind of explanation of why all sentences are true.  ‘Truth’ varies in application. 

The explanation of the truth of CT1, for example, must differ significantly from the explanation of the

truth of CT2.  Our justification for asserting statements about cats and mats relies, often, on direct

observation.  Our justification for asserting statements about mathematical objects relies only indirectly

(at most) on sense experience.  To repeat, according to the deflationist, we do not even need ‘true’ in our

language.  It’s just a handy tool.

Deflationists look at CT as a satisfactory definition of truth. That’s why deflationism also

goes by the name ‘redundancy theory’. Inflationists about truth look at CT as merely a minimal condition

for truth. They claim that there are additional requirements, like correspondence to reality.

Alfred Tarski, one of the great twentieth-century logicians, introduced CT as an essential

component of his treatment of the semantic paradoxes.  There is some debate about whether Tarski is best

understood as a deflationist or as an inflationist, to which we will return after looking in more detail at

how he dealt with the paradoxes.

4.7.2. The Liar, and Other Semantic Paradoxes

Much work on truth over the last century has been technical, in response to the semantic

paradoxes.  The most important semantic paradox is called the liar.

L This sentence is false.

L is an example of a paradoxical sentence.  If L is true, then, since it says that it is false, it must

be false.  But if it is false, then since it says that it is false, it must be true.  But, if it is true...  L thus lacks

a single, definite truth value, even though it is a grammatically well-formed sentence.

The liar is often called Epimenides’ paradox.  Epimenides was a Cretan to whom the statement

that all Cretans are liars is attributed.

W.V. Quine, in his essay “The Ways of Paradox,” argues that there are grounds to question either

the paradoxicality or the well-formedness of L.  It is not clear what ‘this sentence’ refers to.

If we substitute ‘this sentence is false’ for ‘this sentence’, then we get LQ.

LQ ‘This sentence is false’ is false.

LQ does not ascribe falsity to itself, and the paradox is avoided, or at least delayed.  Still, we can
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find other, similarly troublesome sentences.  Quine constructed QP, which avoids the above problem.

QP ‘Yields falsehood when appended to its own quotation’ yields falsehood when

appended to its own quotation.

In both L and QP, the culprit seems to be the invocation of the concept falsity.  Truth and falsity

are called semantic terms.  ‘Semantic’ can refer to truth or to meaning.  In ordinary usage, when we talk

about semantics, we refer to meanings.  When we present a semantics for a formal language, we provide

truth conditions for the wffs of the language.  Our semantics for PL, for example, consisted of truth

tables.  The more-complicated semantics for M  consist of interpretations and satisfaction conditions, and

ultimately on truth.

The problem with many sentences like L and QP seems to be rooted in the presence of semantic

terms, like ‘true’ and ‘false’.  Thus, such problematic sentences are called semantic paradoxes.

One diagnosis of many semantic paradoxes, including the liar, is that they involve illicit self-

reference.  Another self-referential paradox, the barber paradox, is due to Bertrand Russell, though he

credits an anonymous source.  Consider the barber in a town who shaves all the men who do not shave

themselves.  Does he shave himself?  You can construct a puzzling declarative sentence, similar to the

liar, which I leave to you as an exercise.

Not all semantic paradoxes involve truth, or self-reference.  Consider Grelling’s paradox.  Some

predicates apply to themselves, whereas others do not.  ‘Polysyllabic’ is polysyllabic; ‘monosyllabic’ is

not monosyllabic.  Call a predicate heterological if it does not apply to itself.  ‘Monosyllabic’ is

heterological; ‘polysyllabic’ is not heterological.  (We can call it autological, or homological.)  Now,

consider whether ‘heterological’ applies to itself.  If it does, then ‘heterological’ is not heterological.  But,

if ‘heterological’ is not heterological, then it does not apply to itself, which means that it is heterological. 

We can construct a statement involving ‘heterological’ whose truth value is puzzling.

HH ‘Heterological’ is heterological.

Grelling’s paradox is semantic, but does not involve ‘truth’ or ‘falsity’ explicitly.  Grelling’s

paradox is about meaning.

S1 and S2 are two popular solutions to the semantic paradoxes.

S1 Introduce a third truth value for paradoxical sentences.

S2 Banish semantic terms from formal languages.

There are two problems with S1.  First, systems of three-valued logic either lose logical truths and

valid inferences or ascribe truth to conditional sentences with indeterminate antecedents and

consequences.  Second, adding a third truth value will not solve the problem of the strengthened liar.

SL This sentence is not true.

If SL is true, then since it says that it is not true, it must be either false or indeterminate.  But, if it

is false or indeterminate, then what SL says holds of itself.  So, SL is true.  The paradox recurs.

The second popular solution, S2, is Tarski’s, which we will examine in a moment.  First, we

should look in greater detail how the paradoxes create logical difficulties.
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4.7.3. Explosion, or What’s So Bad About the Paradoxes?

In the early twentieth century, truth had gotten a terrible reputation, in large part due to the

paradoxes.  The paradoxes lead to contradictions.  Contradictions are unacceptable in traditional, or

classical, formal systems because a contradiction entails anything.  This property of classical systems is

called explosion.

Explosion 1. P C -P / Q

2. P 1, Simp

3. P w Q 2, Add

4. -P C P 1, Com

5. -P 4, Simp

6. Q 3, 5, DS

QED

To see how the liar leads to a contradiction, consider L again.  Applying the T-schema yields

CTL.

CTL L is true if and only if L is false.

We can translate this sentence into M  by taking a constant, say ‘p’, to stand for the sentence L,

and introducing a truth predicate, ‘Tx’.  We also have to take ‘P is true’ to be the negation of ‘P is false’;

the strengthened liar will work a bit differently.

1. Tp / -Tp From CT and the definition of ‘p’

2. (Tp e -Tp) C (-Tp e Tp) 1, Equiv

3. (-Tp e Tp) C (Tp e -Tp) 2, Com

4. -Tp e Tp 3, Simp

5. --Tp w Tp 4, Impl

6. Tp w Tp 5, DN

7. Tp 6, Taut

8. Tp e -Tp 2, Simp

9. -Tp w -Tp 8, Impl

10. -Tp 9, Taut

11. Tp C -Tp 7, 10, Conj

Tilt!

Our natural language contains the word ‘true’, as a predicate.  If we include a truth predicate in

our formal language, we can construct the liar sentence.  If we can construct the liar sentence, we can

formulate an explicit contradiction.  Contradictions explode.  Everything is derivable.  But, we know that

not every sentence is true.  So, if we include a truth predicate in our formal language, our formal language

will not be able to contain, or reveal, our true commitments.

The excitement surrounding the new logic of the early twentieth century included hopes that all

human knowledge could be represented by formal languages, like the logic we are studying.  Since

contradictions lead to explosion, and formal languages in which the paradoxes are representable lead to

contradictions, it became seen as essential to avoid formalizing the concept of truth.  Since formal

languages were seen as the locus of all of our knowledge, it seemed that truth was just not a legitimate

term, not something that we could know.

The bad reputation of truth explains, at least in part, the interest of many philosophers in the
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relativism of coherence truth.  All recent work on truth, whether deflationary or inflationary, owes its

origins to Tarski, who, in the 1930s, showed how to rehabilitate the concept of truth within formalized

languages, how to avoid explosion without giving up on a formalized notion of truth.

4.7.4. Tarski’s Solution

Tarski’s solution to the liar paradox is to distinguish between an object language and a

metalanguage, and to rule sentence L out of the object language.  The object language is the language in

which we are working.  The metalanguage is a language in which we can talk about the object language.

Instances of the T-schema are sentences of the metalanguage which we can use to characterize truth for

the object language.  Since we are constructing a formal object language, like PL or M , we can include or

exclude any terms we wish.  One of the advantages of constructing a formal language is that we can make

it as clean and clear as we wish.  We can omit ‘true’ from our object language and thus avoid the lair

paradox.

Deleting just the liar from the object language might appear arbitrary and ad hoc.  Tarski claims

that the paradoxes show that all uses of the term ‘true’, and related semantic terms, are illegitimate within

any object language.  We can not construct the truth predicate for a language within that language

because that would lead to a contradiction.  Within a metalanguage, we can construct a truth predicate for

any object language.  But that truth predicate will be an element only of the metalanguage, not of the

object language itself.  We have no term in M  for truth in the way that we have a term for identity.

Tarski’s solution to the semantic paradoxes forces us to step out of our object language to

examine its sentences for truth or falsity.  To determine which sentences of an object language are true

and which are false, we examine the truth conditions as given on the right hand side of instances of the T-

schema.  While the sentences themselves are elements of the object language, the truth conditions are,

technically, written in the metalanguage.

The key to Tarski’s solution to the liar paradox is that sentences like L are ill-formed because

they include ‘false’ in the object language.  When I want to use a sentence like LN, he claims, I implicitly

ascend to a metalanguage to do so.  In a metalanguage, I can also construct sentences like the important

TC.

TC All consequences of true sentences are true.

Sentences like TC are fundamental to metalogic, and model theory, fields that Tarski more or less

created.  In metalogic, we explore questions of whether a formal system is sound, or complete, or

decidable.  We will put them aside, here, and see if Tarski’s T-schema CT can help us understand our

ordinary conception of truth.

Before we approach the questions about whether Tarski’s theory is inflationary or deflationary,

about how we are to understand the concept of ‘truth’ more broadly, we should look briefly at a technical

concern about the sufficiency of his solution, and an alternative.

4.7.5. Kripke’s Alternative

Tarski’s construction produces a hierarchy of languages.  To construct a truth predicate for an

object language, we eliminate semantic terms from our object language and ascend to a metalanguage.

For our purposes, that means that we will not include a truth predicate as part of M .  If we want to know

about the truth of sentences of M , we take an external perspective, working in a metalanguage.

We might reasonably wonder about truth in the metalanguage.  Of course, for the same reasons
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that the object language can not contain a truth predicate, the metalanguage can not contain its own truth

predicate.  But, we can construct a truth predicate for the metalanguage in a further metalanguage.  To

construct a truth predicate for the second metalanguage, we can construct a third, and so on.  Each of the

separate truth predicates occurs at a different level in this ever-expanding hierarchy.

The relations among these truth predicates are merely analogical.  Each metalanguage is distinct,

and has different terms.  Each truth predicate is independent of each other.  We are burdened not with one

‘truth’, but an infinite hierarchy of ‘truth’s.

To make matters worse, there are cases in which we do not know which level in the hierarchy any

particular use of ‘true’ or ‘false’ belongs to.  Consider GB.

GB Everything George W. Bush says is false.

GB must be made in a metalanguage one step higher than anything that Bush ever said.  If I assert

GB, then to know what level my ‘false’ belongs to, I need to know about all the levels of Bush’s uses of

‘true’ and ‘false’.  If Bush once claimed BC, for example, then in order to know what level Bush’s ‘false’

occurs at, we also need to know all the levels of the uses of ‘true’ and ‘false’ in whatever Clinton said.

BC Everything Bill Clinton says is false.

Furthermore, if Clinton were the speaker of GB, then Bush and Clinton become embroiled in a

semantic circle.  The level of GB must be higher than the level of BC.  The level of BC must be higher

than that of GB.  Tarski’s hierarchical approach seems to lead to a contradiction in this case despite the

fact that there seems to be nothing contradictory about the conjunction of GB (stated by Clinton) and BC

(stated by Bush).  They are just both false statements: both Clinton and Bush have uttered some truths.

Saul Kripke, in a paper called “Outline of a Theory of Truth,” showed that we can construct a

truth predicate for a language embedded within the object language itself, without creating paradox.  Here

is a quick sketch of Kripke’s approach.

We start with a base language, containing no logical connectives, quantifiers, or truth predicate. 

Then, we add a truth predicate to the language itself.  We can more-or-less easily decide which sentences

of the base language are true and which are false, since there is no truth predicate in the base language. 

Then, we can add the familiar logical connectives: negation, conjunction, and disjunction, say.  The

semantics for the propositional connectives are easily presented, as well.  So, we can apply the truth

predicate to all base-level sentences and logical functions of them.

Next, we can consider sentences with single uses of semantic terms licensed so far.  We repeat the

original process, adding more complex sentences to our lists of true and false sentences.  We can proceed

to sentences of greater and greater semantic complexity.  At each level, we bring along all the earlier

sentences, and apply the truth predicate to them.  But, the truth predicate does not apply to sentences at its

own level.  Eventually, we can, in principle, reach any of a variety of fixed points past which further

construction is unwarranted.  There are many different fixed points, and lots of technical work can be

done with them.

The key to Kripke’s construction is that he produces an object-level truth predicate.  This object-

language truth predicate allows us to value many sentences that include ‘true’.  We can have a language

with all of those sentences, and one truth predicate for all of them.  Kripke contains the entire Tarskian

hierarchy in one language.

Kripke’s paper is technical, but extremely elegant.  Those with mathematics or other technical

backgrounds might enjoy working on a paper about it.  For now, I will put aside Kripke’s improvements

on Tarski’s technical work, and the problems of the hierarchy of truth predicates, and return to the

philosophical questions about truth raised by Tarski.  Most importantly, how does the technical work on

truth illuminate the deeper issues about the nature of truth?
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4.7.6. Is Truth Deflationary or Inflationary?

Tarski calls the notion of truth which underlies his method of introducing a truth predicate into a

metalanguage the semantic conception of truth.  He uses sentences like LN and TC to show that ‘truth’

plays an essential role in a theory.  It might thus seem like Tarski is an inflationist, indeed a

correspondence theorist.

But Tarski’s claim that ‘truth’ is essential may not have inflationary implications.  If ‘true’ is a

device used to refer to other sentences, it depends on what we think of those other sentences, the ones

without ‘true’ and with content.  If we need a words-worlds relation in order to ascribe ‘true’ to a

sentence, then truth will not be merely deflationary, or redundant.  If all there is to truth is eliminable,

then perhaps there is no essence to truth.  Even Aristotle’s original claim could itself  be given a

deflationary interpretation!  Tarski prescribes a method to determining the correct notion of truth.

It seems to me obvious that the only rational approach to [questions about the correct notion of

truth] would be the following: We should reconcile ourselves with the fact that we are

confronted, not with one concept, but with several different concepts which are denoted by one

word; we should try to make these concepts as clear as possible (by means of definition, or of an

axiomatic procedure, or in some other way); to avoid further confusions, we should agree to use

different terms for different concepts; and then we may proceed to a quiet and systematic study of

all concepts involved, which will exhibit their main properties and mutual relations (355).

Furthermore, Tarski believes that the semantic conception is agnostic among any deeper

philosophical debates.

We may accept the semantic conception of truth without giving up any epistemological attitude

we may have had; we may remain naive realists, critical realists or idealists, empiricists or

metaphysicians - whatever we were before.  The semantic conception is completely neutral

toward all these issues (362).

Hartry Field’s paper “Tarski’s Theory of Truth” argues convincingly that Tarski is not a

deflationist.  It is, like Kripke’s paper, difficult and technical, but influential and fecund.  It is more

strictly philosophical than Kripke’s paper.  Field shows that in order to use the T-schema as a definition

of truth, we need to supplement it with some kind of account of why we choose certain sentences to be

true and not others.   To see the problem, remember that we could understand the truth conditions in CT4

without understanding the Spanish sentence on the left.  To capture truth, it is not enough just to list the

true and false sentences of a language.  We want to analyze the component parts of the Spanish

expressions, and how they interact to form true or false sentences.  CT, by itself, does not provide that

kind of explanation.  Tarski’s construction only reduces ‘truth’ to other semantic notions.

If we are merely concerned with constructing a metalinguistic truth predicate, CT might suffice. 

We might, in contrast, wish to take Tarski’s claim to a semantic notion of truth seriously.  In that case, we

need not merely to explain truth in terms of other semantic notions, but to show how sentences become

either true or false.  We would like, in addition to CT, an explanation of why the terms are true of the

things of which they are true, in a way that is consistent with our other scientific commitments.  It is not

that we could not add such an account to complete Tarski’s theory.  But, once we do, the theory does not

appear deflationary.

We started by wondering about the nature of truth, whether it is correspondence to reality, or

consistency, or whether it lacks any univocal nature.  The question has now become whether Tarski’s

formalized semantic conception captures our ordinary notion.  Is there more to be said about truth than

Convention T?
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4.7.7. Did Tarski Present the Final Word on Truth?

There are at least two ways to look at Tarski’s semantic theory of truth.  The first way is

minimalist, and it focuses on the condition of adequacy, the schema CT.  The second way is inflationist,

and it focuses on the extent to which Tarski legitimizes our ordinary, correspondence notion of truth. 

There is no question that the notion of truth is useful, in sentences like LN, and essential to metalogical

work, in sentences like TC.  Tarski, and those following him, have vindicated formal theories of truth

insofar as they allow us to capture these minimal uses of the term.

The question of whether philosophers need an inflationary notion of truth continues to be

debated.  Many philosophers, Tarski among them, believe that science aims at truth.  The main reason we

want consistent theories is because we know that an inconsistent theory contains a falsehood.

There are obvious epistemic worries about our access to truth, our ability to know what is true

and what is false.  The old problem of whether we can assess a words-worlds connection still resonates. 

Some philosophers continue to try to replace truth with a weaker condition like warranted assertability or

coherence.

As I mentioned, much of the contemporary work on truth and the paradoxes is technical, though

the classical discussion of theories of truth is mainly philosophical.  Michael Lynch’s True to Life: Why

Truth Matters is a friendly introduction to the non-technical work on truth by someone who has worked

with the contemporary questions.

One of the more controversial but productive areas of recent research has been dialetheism. 

According to dialetheists like Graham Priest, the liar is both true and false.  There has been a lot of

technical work on paraconsistent logics, logics which contain contradictions.  Contradictions in classical

logic are explosive: anything follows.  So, dialetheists look to block explosion in a variety of ways.

Whether or not Tarski’s solution to the problem of the paradoxes is ideal, the distinction between

object language and metalanguage has become fundamental in all contemporary treatments of logic.  In

this textbook, I have carefully presented precise rules for the formation of our object language, which is

our proper domain of study.  The Greek letters I use to describe argument forms, and the truth values 1

and 0, are all elements of the metalanguage we use to study the object language.  The formalization of this

distinction traces directly to Tarski’s work on truth.
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Paper Topics

1. Does introducing a third truth-value solve the problem of the liar?  Discuss the strengthened liar

paradox.  Kirkham has a good, if brief, discussion of the strengthened liar.  

2. Is truth deflationary or inflationary?  See Horwich, and the Lynch collection.  Fisher has a fine

introductory discussion.

3. Is truth relative to a language?  Tarski’s definition of truth introduces a different truth predicate for

each language, and creates a hierarchy of languages.  Is this construction objectionable?  See Fisher,

Kirkham, and the Lynch collection.

4. Graham Priest has lately been defending dialetheism, the claim that there can be true contradictions.

Can there be true contradictions?  Is the liar one of them?

5. For a more technical paper, describe the difference between Kripke’s truth predicate and Tarski’s

hierarchy.  What advantages does Kripke claim for his construction?  Is it satisfactory?

6. Is truth a correspondence between words and reality?  See the Lynch collection for the classic,

historical discussion.
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Field, Hartry.  Saving Truth from Paradox.  Oxford, 2008.  Field is astoundingly good, but only

accessible to the most ambitious readers.
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Phenomenological Research 4.3: March 1944, pp 341-376.
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§8: Quantification and Ontological Commitment

4.8.1. Grammar, Logic, and the Ontological Argument

All of our first-order languages contain two types of quantifiers, existential and universal.  The

existential quantifier is sometimes called the particular quantifier.  Calling ‘�’ an existential quantifier

seems to assume that uses of the quantifier in our logic involve us in commitments to the existence of

something or other.  Calling ‘�’ a particular quantifier leaves open the option that our logic may be

interpreted without such commitments.  We sometimes call the collection of objects which we believe to

exist our ontological commitments.  In this section, I will discuss ontological commitment, the way that

language hooks on to the world, and the connection between these topics and the quantifiers.

Q1 and Q2 are basic questions which have occupied philosophers for a long time.

Q1 What exists?

Q2 How do we know?

Q1 starts us on the road to metaphysics:  Are there minds?  Are there laws of nature?  Is there a

God?  The objects on our list of what we think exists are called our ontology, or our ontological

commitments.  Some kinds of things more-or-less obviously exist: trees and houses and people.  The

existence of other kinds of things is more contentious: numbers, souls and quarks.  Even the question of

the existence of some particular things can be debated: does Descartes, for example, exist?

Q2 starts us on the road to epistemology.  If we believe a claim, like the claim that there are

minds in the world in addition to bodies, then we should have some reasons for believing that claim.  

Answers to Q1 are thus tied to answers to Q2.  If I claim that electrons exist, I should be able to

demonstrate how I discovered them, or how I posited them, or how their existence was revealed to me.  If

you deny my claim that the tooth fairy exists, you will appeal the fact that we never see such a thing, for

example.  To resolve disputes about what exists, we should have a method to determine what exists.  At

least, we should agree on a way to debate what exists.  Our answer to the question whether Descartes

exists, for example, depends on what we say about all people who are no longer alive.

Since Descartes is no longer alive, we could naturally think of him as not existing.  But, we could

think of the world as four-dimensional, with three spatial-dimensions and one temporal dimension.  What

exists, then, is everything that has any spatial and/or temporal coordinates.  In a four-dimensional world,

people are extended (temporally) through some portion of the world.  It is typical to call such a

conception a space-time worm.  Whether a person’s space-time worm is present at any particular temporal

point, like this one right now, is irrelevant to her/his existence.

We are faced with a question of whether to conceive of the world three-dimensionally, in which

case Descartes does not exist, or four-dimensionally, in which case Descartes does exist.  Metaphysics is

the study of our answers to such questions.  Epistemology is the systematic study of the reasons one has

for choosing one or the other.  It is the study of justification of our beliefs. 

Frege, in addition to developing modern logic, contributed centrally to what has become known

as the linguistic turn in philosophy.  In the twentieth century, many philosophers turned to the study of

language in order to engage metaphysical and epistemological questions.  If we could become clearer

about how language works, some philosophers believed, we could answer some of our long-standing

metaphysical and epistemological questions.

One of the early insights made by philosophers of language, perhaps properly ascribed to

Bertrand Russell, is that grammatical form is not a sure guide to logical form.  Grammatically, for

example, KE and KP are parallel.
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KE Saul Kripke exists.

KP Saul Kripke is a philosopher.

Both contain a term for the same subject, Saul Kripke.  The first contains a grammatical predicate

of existence.  The second contains a grammatical predicate of being a philosopher.  But, in first-order

logic, we regiment KP using a predicate while we regiment KE using an existential quantifier.

KEr (�x)x=s or (�x)Sx

KPr Ps or (�x)(Sx e Px)

Thus, our typical regimentations of natural languages into first-order logic presupposes that

predications of existence are really different from other kinds of predications.

Philosophers have argued for a long time about grammatical predications of existence.  Many of

those debates have focused on an argument for the existence of God called the ontological argument.  The

ontological argument traces back at least as far as St. Anselm in the eleventh century, and was central to

Descartes’s Meditations, and the works of Spinoza and Leibniz and many other philosophers.  There are

various forms of the ontological argument.  OA captures its core.

OA OA1. The term ‘God’ may be used to stand for the concept of a thing with all

perfections, without presuming that God exists.

OA2. Existence is a perfection; it is perfect to exist while not-existing would be

an imperfection.

OA3. The claim that God does not exist, then, would be a contradiction.

OAC. God exists.

In addition to its many defenders, the ontological argument has had many detractors.  OA begins

with a simple definition and quickly concludes, from an analysis of the logic of our language, that God

exists.  That conclusion has seemed to many philosophers far too quick.  Since David Hume’s time, in the

eighteenth century, a standard objection to the ontological argument has focused on the difference

between existence and other kinds of predications.

Though certain sensations may at one time be united, we quickly find they admit of a

separation, and may be presented apart. And thus, though every impression and idea we

remember be considered as existent, the idea of existence is not derived from any particular

impression. 

The idea of existence, then, is the very same with the idea of what we conceive to be

existent. To reflect on any thing simply, and to reflect on it as existent, are nothing different from

each other. That idea, when conjoined with the idea of any object, makes no addition to it.

Whatever we conceive, we conceive to be existent. Any idea we please to form is the idea of a

being; and the idea of a being is any idea we please to form (Hume, Treatise on Human Nature,

Book I, Part II, §VI).

Hume’s allegation, here, is that our predications of existence are naturally to be taken as unique

kinds of predications.  They do not augment their subject.  They just repeat the idea of the subject. 

According to Hume, saying that Saul Kripke exists is to say nothing more than ‘Saul Kripke’.  To say that

God exists is not to ascribe any further property.  We can not, merely by analyzing our language,

conclude whether something exists or not.

Immanuel Kant, following Hume and echoing an objection made to Descartes by Pierre Gassendi,

argued that existence is not a real predicate.  In KE, we are predicating (grammatically) existence of the
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statue.  But, we are not saying anything substantive about Kripke.  In KP, we use a real predicate.  Any

property can be predicated of any object, grammatically.  SM is a grammatical sentence, even if it is

nonsensical.

SM Seventeen loves its mother.

‘Loves one’s mother’ is a real predicate.  But Kant’s point is that one can not do metaphysics

through grammar alone.  Existence is a grammatical predicate.  It works in natural language like a

predicate.  But it is not a real predicate.  When we want to analyze precisely what we believe, we do not

take claims of existence as ascribing real property.  So grammatical form is not the same as logical form.

The claim that existence is not a predicate becomes manifest in contemporary first-order logic. 

Properties like being a god, or a person, or being mortal or vain, get translated as predicates.  But

existence is taken care of by quantifiers, rather than predicates.  To say that God exists, we might use one

or other version of GE.

GE (�x)x=g or (�x)Gx

The concept of God, on the left, and the object, on the right, are represented independently of the

claim of existence.  If we take first-order logic to be our most austere, canonical language, we vindicate

the claim, from Gassendi and Hume and Kant and Russell, that existence is not a real predicate, that

grammatical form is distinct from logical form.

In first-order logic, then, it is typical to innoculate constants and predicates from questions about

existence.  Questions about existence are all focused on the quantifiers.  This view leads directly to a

worry about names without bearers.  If Hume and Kant are correct about names, then the proper analyses

of EB and EBN are puzzling.

EB The Easter Bunny exists.

EBN The Easter Bunny does not exist.

Terms such as ‘the Easter Bunny’ are called non-referring singular terms.  The problem with non-

referring singular terms is that if names merely denote objects, then in order for EB and EBN to be

sensible, ‘the Easter Bunny’ seems to have to refer to something.  Not only are EB and EBN sensible, but

they have clear and uncontroversial truth values: EB is false and EBN is true.  

The most obvious, indeed the only plausible, thing for EB and EBN to refer to is the Easter

Bunny.  But, there is no such thing.  Hume claimed, “To reflect on any thing simply, and to reflect on it as

existent, are nothing different from each other.”  But, when I reflect on a non-referring singular term, I am

not reflecting on it as existent.  Indeed, it seems part of our very concept of the Easter Bunny that it is

non-existent.  

Some kinds of uses of singular terms, like references to myself, may presuppose the existence of

an object named.  Other kinds of uses, like references to the Easter Bunny, do not.  Hume argued that

predications of existence of a subject presuppose the existence of the term to which the subject exists.  EB

and EBN seem to be counterexamples to Hume’s claim.

We started this section by asking about the meaning of the existential quantifier and the relation

between our logic and our ontology.  One obvious place to look for answers to ontological questions is at

the names used in a theory.  But, names can be misleading.  In the twentieth century, many philosophers

turned their attention away from names and toward existential quantification as the locus of our

expressions of ontological commitment.
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4.8.2. The Riddle of Non-Being

W.V. Quine was among the most impassioned defenders of the connection between existential

quantification and existence claims.  In his important article defending that connection, “On What There

Is,” Quine focuses on the non-referring name ‘Pegasus’.

NP There is no such thing as Pegasus.

Part of Quine’s worry is semantic.  How can I state NP, or any equivalent, without committing

myself to the existence of Pegasus?  If we take existence to be a predicate, NP says that there is some

thing, Pegasus, that lacks the property of existence.

NPr1 -Ep

But Pegasus is not anything, ‘p’ does not refer, and I can not say something about nothing.  So, if

Pegasus does not exist, then it seems a bit puzzling how I can deny that it exists.  I am talking about a

particular thing.  It has to have some sort of existence in order for NP to be sensible.

One option for understanding the term ‘Pegasus’ is to take it to refer to the idea of Pegasus.  John

Locke, and many of the modern philosophers who followed him, took words to stand for ideas in our

minds.  If ‘Pegasus’ refers to my idea of Pegasus, we can best understand NP as claiming that the idea is

not instantiated.

But taking names to refer to the ideas we associate with those names demonstrates a basic

confusion of ideas and objects.  ‘Benedict Hall is a warm building’ refers to an object, not an idea. 

‘Pegasus is a winged horse’ has the same grammatical structure.  Why would it refer to an idea, rather

than an object?  How do we know when a name refers to an object, like Benedict Hall, and when it refers

to an idea of an object, like ‘Pegasus’?  Some singular terms appear to refer to objects even though we do

not know if those objects really exist.  We do not know whether there is life on other planets, but ‘the first

planet discovered by people on Earth which supports life’ does seem like a sensible term.

More importantly, against the suggestion that terms like ‘Pegasus’ refer to my idea of Pegasus, I

do have an idea of Pegasus.  If NP referred to my idea, then it would, on a natural interpretation, be false. 

The problem with NP is that it is true just because there is no object in the world corresponding to my

idea.

Another option for understanding terms like ‘Pegasus’ distinguishes between existence and

subsistence.  According to the doctrine of subsistence, all names of possible objects refer to subsistent

objects.  But only some names refer to existent objects.  The German philosopher Alexis Meinong

defended the distinction between existence and subsistence.  Meinong would say that since Pegasus

subsists, statements like NP can be truly interpreted as saying that Pegasus merely subsists and does not

exist.

One problem for Meingong’s solution to the puzzle is that we also have terms for impossible

objects, like a round square cupola.  We might take terms for impossible objects to be meaningless.  But

if we take ‘round square’ to be meaningless, even though ‘round’ and ‘square’ are meaningful, we have to

abandon the compositionality of meaning, that the meanings of longer strings of our language are built

out of the meanings of their component parts.  ‘Round’ is meaningful and ‘square’ is meaningful, but

‘round square’, since there can be no such thing, is meaningless.

Quine says that the abandonment of meaning for such terms is ill-motivated.  But his main

argument consists of his positive account of how to deal with names which lack referents, and how to deal

with debates about existence claims, generally.



Marcus, What Follows, page 276

4.8.3. Quine’s Method

One method for determining what we think exists, a method favored by Locke and Hume and

Quine’s mentor Rudolf Carnap, relies on sense experience.  For these philosophers, all claims about what

exists must be justified directly by some kind of sense experience.  The claim that my knowledge of

oranges must derive from my experiences of oranges seems plausible enough.  Further, we could use the

same claims to defend our beliefs that there is no Loch Ness monster: no one has any direct sense

experience of Nessie.  But these empiricists had difficulty explaining our knowledge of mathematics and

atoms.  We do not have any sense experience of the abstract objects of mathematics, and yet we know

many facts about them.  We have only the merest and most indirect sense experience of atoms.

Another method for determining our beliefs about what exists is favored by Descartes and the

great logician Kurt Gödel.  These rationalists rely on human reasoning in addition to sense experience. 

Rationalists have an account of our beliefs about numbers, since they are object of our pure thought.  But

rationalists are often accused of mysticism.  Indeed many rationalists, historically, claimed to have certain

knowledge of the existence of God.  A seemingly magical ability to know something independently of

sense experience can be used to try to justify beliefs in ghosts and spirits, as well as numbers and

electrons.

Quine’s method for determining ontic commitments uses the tools of first-order logic.

To be is to be the value of a variable (Quine, “On What There Is” 15).

I will attempt to answer two questions about Quine’s method.  First, what variables are relevant to

the question of what exists?  Second, what does it mean to be a value of a variable?

The answer to the first question is fairly straightforward.  Quine is concerned with the best

theories for explaining our sense experience.  Quine is thus much like his empiricist predecessors in

narrowing his focus on sense experience.  But, he is unlike traditional empiricists in that he does not

reduce all claims of existence directly to sense experiences. Instead, Quine constructs a theory of our

sense experience.  Then, he looks at the theory, and decides what it presupposes, or what it posits.

Our best ontology will be derived from our best theory.

We might encounter many difference, competing theories of the world.  Determining which

theory is best is tricky.  We want our theories to be simple and elegant, and yet explanatorily powerful. 

We want to unify various diverse phenomena.  Even among the most powerful and elegant best theories,

there may be competitors.  Quine, indeed, raised questions about whether our best theories are

physicalistic or phenomenalist.  A physical theory makes claims about the external, material world.  A

phenomenalist theory makes claims about our experiences of the world.  Since we know directly only our



Marcus, What Follows, page 277

own experiences, perhaps our best theory should refer only to our experiences, not to some posited causes

of those experiences.  Should we commit only to the experiences we have, or to the physical world which

we ordinarily think causes our experience?  In any case, the best theory will have to have some relation to

the best science we can muster.

Even given an ability to choose among competing theories, there are questions about how to

formulate and read a theory.  Quine urges that the least controversial and most effective way of

formulating a theory is to put it in the language of first-order logic.  He motivates his appeal to first-order

logic with a discussion of Russell’s theory of definite descriptions.

Consider, ‘The King of America is bald’.  If we regiment ‘the king of America’ as a name, using

a constant, then we are led to the contradiction KO.

KO  -Bk C--Bk

We assert ‘-Bk’ because the sentence ‘the king of America is bald’ is false.  We assert ‘--Bk’

because ‘-Bk’ seems to entail that the king of America has hair, and that claim must be false, too.

Russell showed how to regiment the sentence as a definite description, so that the paradox

disappears.  ‘The king of America is bald’ becomes ‘there is thing which is a unique king of America and

that thing is bald’.  ‘The king of America is not bald’ becomes ‘there is thing which is a unique king of

America and that thing is not bald’.  Conjoining their negations, as we did in KO, leads to no

contradiction.  We just deny the existence of a unique king of America.

In order to use Russell’s technique on ‘Pegasus’ we have to interpret the name as a definite

description.  Quine introduces the predicate ‘pegasizes’ which stands for a property which holds of all and

only things that have the properties that Pegasus does.  I used this technique, of regimenting natural-

language names as predicates, in the right sides of KEr, KPr, and GE.  We can regiment NP, then, as

NPr2, adopting Kant’s claim that existence is not a predicate.

NPr2 -(�x)Px

NPr2 is just the awkward claim NP written in first-order logic.  Quine further thinks that we have

solved a problem, that we no longer have any temptation to think that there is a Pegasus in order to claim

‘-(�x)Px’.  A name can be meaningful, even if it has no bearer.

The distinction between the meaning of an expression, what some philosophers call its sense, and

its reference derives from Frege.  Frege used the example of the morning star (classically known as

‘Phosphorus’) and the evening star (‘Hesperus’) which both turned out to be the planet Venus.  The terms

‘Hesperus’ and ‘Phosphorus’ referred to the same thing despite having different meanings.  Similarly,

‘Clark Kent’ and ‘Superman’ refer to the same person while having different connotations.

To defend his claim that we can have meaningful terms without referents, that we can use terms

like ‘Pegasus’ without committing to the existence of something named by ‘Pegasus’, Quine appeals to

his method of determining our commitments by looking at interpretations of first-order logic, at the

formal semantics.  We call an interpretation on which all of a set of sentences come out true a model of

that set.  A logically valid formula is one which is true on every interpretation.  When Quine says that to

be is to be the value of a variable, he means that when we interpret our formal best theory, we need

certain objects to model our theories.  Only certain kinds of objects will model the theory.  The objects

which appear in a model of the theory are said, by that theory on that interpretation, to exist.

The formal system we base on the language F is sound and complete.  Soundness means that

every provable formula is true under all interpretations.  Completeness means that any formula which is

true under all interpretations is provable.  The formulas which are true under all interpretations are the

tautologies, or logical truths.

If we add non-logical axioms, we create a first-order theory of whatever those axioms concern.
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If we add mathematical axioms, we can create a first-order mathematical theory.  If we add axioms of

physics, we can create a first-order physical theory.  By adding axioms of our best scientific theories, we

can, theoretically, construct a grand theory of everything.  What our best theory says exists will be the

objects in the domain of quantification of that theory.  Unfortunately, the addition of non-logical axioms

strong enough to do the work that scientists require turns our formal system incomplete.  But, the view of

the language of first-order logic as canonical persists among many philosophers.  Our best expressions of

our ontological commitments will be made in a canonical language, perhaps that of first-order logic.  To

be is to be the value of a variable of that language.

4.8.4. Applying Quine’s Method

Quine’s method for determining the ontological commitments of a theory can be applied to all

sorts of questions.  Consider again Quine’s original worry about Pegasus.  While names seem

unavoidably referential, Quine urges us to avoid them as the sources of reference.  Instead, we look to the

domain of quantification, and the objects which serve as values of our variables.  We regiment our best

theory.  It will include, or entail, a sentence like NPr2 which is logically equivalent to NPr3.

NPr2 -(�x)Px

NPr3 (�x)-Px

If we want to know whether NPr3 is true, we look inside the domain of quantification.  If there is

no object with the property of being Pegasus, we call this sentence true in the interpretation.  We

construct our best theory so that everything in the world is in our domain of quantification and nothing

else is.

Universals are among the entities whose existence philosophers debate.  Consider, as Quine does,

redness.  Is redness a thing beyond the particular things, like cardinals, that are red?  We can use it

grammatically as an object, as in RR.

RR Redness is prettier than brownness.

A grammatical interpretation of the sensible sentence RR reifies redness, takes it to be an object. 

A profligate ontologist might thus be led to believe that there are abstract objects in addition to the

concrete objects which have their properties.  There is appendicitis in addition to people and their

appendixes.  There is redness in addition to fire engines and apples.

Quine insists that just as we can have red fire engines without redness, we can have meaningful

statements without meanings.  If we again turn to Quine’s method, we see a way to neatly express the

question.  We regiment properties (universals) as predicates.  We interpret predicates as sets of objects in

the domain.  So, the predicate ‘is red’ is interpreted as the set of all red things.  The predicate ‘has

appendicitis’ is taken as the set of all things that have appendicitis.  Quine’s method demands sets, but not

properties.  There is a set of red things, but there is no redness.

The difference between sets and properties is that sets are extensional: they are determined

exclusively by their members, objects in the domain.  If two sets have the same members, they are the

same set.  In contrast, properties are not necessarily defined extensionally.  The set of creatures with

hearts and creatures with kidneys is extensionally equivalent, they are the same creatures.  But, the

property of having a heart is different (intensionally, in terms of meaning) from the property of having a

kidney.

Standard interpretations of first-order logic are extensional.  We interpret predicates as sets of

objects in a domain.  Thus, standard interpretations of first-order logic do not reify properties.  Still, we
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can reify them, if we wish, by including them among the objects in the domain of the theory.  Thus, first-

order logic can maintain a neutrality about existence that makes it compelling as a canonical language for

expressing our most considered ontological commitments.

Paper Topics

1. What is the ontological status of abstract objects, like numbers or appendicitis?  How can we

characterize the debate between nominalists and realists?  How does Quine’s method facilitate the debate? 

Discuss the role of contextual definition Quine mentions at the end of DE.

2. Are there universals?  What is the relationship between the distinction between singular and general

statements and the distinction between abstract and concrete terms.  Does that relationship help us

understand the problem of universals?  How does Quine’s criterion facilitate the debate?  Why does

Quine reject meanings, in OWTI, and how does the rejection of meanings relate to the problem of

universals?

3. What is the problem of non-existence?  Consider the solutions provided by McX and Wyman.  How

does Quine’s approach differ?  How does Quine’s approach relate to Russell’s theory of definite

descriptions?

4. What is a name?  What is the relationship between naming and quantification?  Discuss Quine’s

dictum, that to be is to be the value of a variable.
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§9: Color Incompatibility

4.9.1. Wittgenstein’s Logical Atomism

The question of the scope and importance of deductive logic is a perennial topic for philosophers

of logic.  Some philosophers see it as a severely limited discipline, governing only the most obvious and

incontrovertible inferences.  Others see it as the foundation for all human reasoning, a normative

discipline prescribing the ways in which rational beings should think.  The beliefs of most philosophers

nowadays lie somewhere between these two extremes.  So, a central question for philosophers concerns

the importance of the formal definitions of logical consequence that are developed in the first three

chapters of this book for human reasoning more widely: Why do we study logic?

Kant, in the late eighteenth century had seen logic as a closed and complete discipline.  But

Frege’s new mathematical logic, developed a century later, was remarkably more powerful, especially in

its use of quantifiers and its general treatment of relations.  The new logic was so successful in unifying

propositional logic with term logic and generalizing their study that some philosophers initially supported

hopes of it being the canonical language of all of knowledge.  Through the twentieth century, Quine was a

proponent of that view, and some philosophers continue to believe that first-order logic is canonical.

An early and enthusiastic philosophical application of Frege’s logic to broader philosophical

purposes came from Ludwig Wittgenstein, in his 1919 Tractatus Logico-Philosophicus.  Wittgenstein,

had visited Frege in Germany as a young student and had studied with Bertrand Russell, before World

War I, in Cambridge, England.  He worked on the Tractatus during his subsequent time in the Austrian

army during the war.  That treatise was published after the war, with an introduction by Russell.  Russell

described Wittgenstein’s Tractatus as the culmination of the enterprise of logical analysis begun by

Frege.

According to the Tractatus, the world is a collection of independent atomic facts combined

according to logical principles.  If we could get clear about the correct logic, Wittgenstein argued, then

we could have a complete, accurate picture of the world in our best, most austere language.

The Tractatus was highly influential in Europe between the two wars, as the foundation of logical

empiricism, or logical positivism.  A group of logical empiricist philosophers influenced by the Tractatus,

including Rudolph Carnap, Otto Neurath, Moritz Schlick, Carl Gustav (Peter) Hempel, and Herbert Feigl,

came to be known as the Vienna Circle.  A less-influential group called the Berlin Circle was centered

around physicist Hans Reichenbach.  The young A.J. Ayer visited Vienna from England and wrote about

the movement.  Ayer’s Language, Truth, and Logic became a primary source for logical empiricism for

English-speaking philosophers.

One could easily spend an entire term studying the Tractatus, let alone logical empiricism.  The

Tractatus is obscure, when read directly, consisting of a series of numbered aphorisms.  There are seven

main propositions, and all but the seventh have sets of explanatory sub-propositions.  Wittgenstein seeks

the limits of language in distinguishing between what can and what can not be said.

§7. Whereof one cannot speak, thereof one must be silent.

The project of distinguishing between what can and can not be said, or between what can and can

not be thought, naturally meets a fundamental difficulty.  If we want to distinguish between, say, the

backyards of two people, we can draw a boundary line.  We perceive both sides of the line, and see the

landscape divided.  This side belongs to the Majors; this other side belongs to the Teodoros.  In contrast,

attempts to draw a line between what is expressible in language and what is not expressible are essentially

more problematic.  What is outside of the scope of language is inaccessible to expression.  What is

outside the boundary of thought can not be thought.  We can look at both sides of a fense.  We can only

talk about and think about one side of the boundaries of language and thought.

Still, Wittgenstein believed that we can at least try to get clear about how our language functions
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and what its limits are.  If we can not describe what is outside the limits of language, at least we can bump

up against the edges.

The Tractatus presents an atomistic picture theory of meaning on which language mirrors the

world.  The structure both of language and of the world is governed by logical rules, like those depicted

in the truth tables.  Indeed, Wittgenstein was the first to develop truth tables, in the Tractatus; see §4.31. 

The world, he alleges, is a collection of independent states of affairs.  Suppose that I am standing to the

right of you.  We have, let’s say, two atomic facts, my standing and your standing, and a logical relation ,

being to the right of, which holds between those facts.  I could stand to the right of you, or to the left of

you, or on the other side of the planet.  All of my relations to you are independent of you.

§1.2. The world divides into facts.

§2.06. From the existence or non-existence of one state of affairs, it is impossible to infer the

existence or non-existence of another (Wittgenstein, Tractatus Logico-Philosophicus).

On Wittgenstein’s view, language consists of atomic statements of those facts, connected into

more complex statements by logical principles.  Language mirrors the world by providing a logical

structure which is structurally equivalent, or isomorphic, to the structure of the world.

§2.16. If a fact is to be a picture, it must have something in common with what it depicts.

§2.17. What a picture must have in common with reality, in order to be able to depict it -

correctly or incorrectly - in the way it does, is its pictorial form (ibid).

Since language and logic have the same form as the world, we can know about the fundamental

structure of reality by examining the fundamental structures of language and logic.

Of course, we can not rely on the surface grammar of natural language to reflect the structure of

the world.  Natural language is sloppy, full of misleading metaphors and pragmatic shorthand.  If we want

a true representation of the world, we must seek a finer language, like Frege’s mathematical logic.  Recall

Frege’s claim that his Begriffsschrift is like a microscope on our language.

I believe I can make the relationship of my Begriffsschrift to ordinary language clearest if I

compare it to that of the microscope to the eye.  The latter, due to the range of its applicability,

due to the flexibility with which it is able to adapt to the most diverse circumstances, has a great

superiority over the microscope.  Considered as an optical instrument, it admittedly reveals many

imperfections, which usually remain unnoticed only because of its intimate connection with

mental life.  But as soon as scientific purposes place great demands on sharpness of resolution,

the eye turns out to be inadequate.  The microscope, on the other hand, is perfectly suited for such

purposes... (Frege, Preface to Begriffsschrift)

Wittgenstein believed that Frege’s logic, therefore, is the precision tool that the picture theory

requires to represent the atomic facts of the world, and to show how they are related and combined.  The

correct logic will mirror the structure of the world.  The correct logic, therefore, is essential to a proper

understanding the nature of reality.

To see how the demands for precision are manifested, notice that my example of an atomic fact,

my standing to the right of you, is misleading.  My standing in a place is not an atomic fact, it is a

complex fact.  Complex facts are those which are analyzable into more-fundamental facts.  You and I are

both complex, since we are divisible into smaller parts.  Standing is also a complex, since it is divisible

into more fundamental facts about the position of our bodies.  The true analysis of the world involves

analyzing such complexes into their simple, atomic components.

Atomic facts are the foundational elements for the Tractatus, akin to the postulates of Euclidean
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geometry, say, or to Descartes’s cogito.  Wittgenstein’s goal, in the Tractatus, was a theory of the world

that analyzed all of the myriad complexes into their atomic elements.  Such a theory would present a

veridical and secure picture of the world.  If we got the atomic elements right and combined them into the

correct logic, our theory of the world would mirror the world precisely.  We would have the isomorphism

between language and the world that we want.

Because of its method of analyzing complex propositions into elementary ones, the kind of

philosophy that was developed by the early Wittgenstein, under the influence of Frege and Russell, was

called analytic philosophy.  The name ‘analytic philosophy’ remains as a characterization of Anglo-

American philosophy, despite the lack of contemporary interest in the project of analysis in this sense. 

But Wittgenstein’s original plan was to use the new logic, because of its utility for analysis, to represent

the atomic facts of the world in elementary propositions and their logical combinations.

4.9.2. The Problem

The problems facing atomism and logical empiricism arise in the Tractatus already, in the worry

about whether there really are independent atomic facts.  Atomic facts are supposed to be the most basic,

not analyzable into further simple facts.  Facts about our bodies, we saw, are not atomic because they can

be reduced to facts about parts of our bodies.  Properties like standing are not atomic for the same reason. 

It is a challenge to try to think about what kinds of facts could be most fundamental, irreducible to other

facts.

Wittgenstein never gives a clear example of an atomic fact.  Russell used the example of the color

of a spot in my field of vision.  A dot in one’s field of vision seems as likely a candidate for an atomic

fact as any for severeal kinds of reasons.  First, a small dot of color seems irreducible to other facts. 

Second, atomic facts are supposed, by definition, to be independent of each other.  The color of one dot in

my field of vision can be any color, independent of the color of any other spot in my field of vision.  Last,

however we construct our theories of the world, however complex we believe the world to be, the

ultimate arbiter of those theories seems to be our sense experience, like the experience of the color of a

spot in our field of vision.  Differences in colors in our fields of vision allow us to read the scale of a

thermometer, the position of the stars seen in a telescope, and the motion of an object travelling toward

us.  Related facts which also seem simple include auditory tones and odors and tastes.

But, since sight is, for most of us, the most fecund of the senses, let’s stick to the color of a spot

in our field of vision.  Wittgenstein noticed that even such simple facts can not be atomic  because they

are not independent.  Instead, they carry some sorts of entailment relations.

§6.3751.  It is clear that the logical product of two elementary propositions can neither be a

tautology nor a contradiction.   The statement that a point in the visual field has two different

colors at the same time is a contradiction.

Spots in one’s color field seem paradigmatically atomic.  Atomic facts must be independent.  But

spots in our color field are not independent.
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Jerrold Katz, in “The Problem in Twentieth-Century Philosophy,” characterizes Wittgenstein’s

6.3751 as the central problem in twentieth-century philosophy.  To explicate the problem, he considers

six sentences.

K1 The spot is red and blue.

K2 The spot is red.

K3 The spot is not blue.

K4 The spot has a color.

K5 Red is a color.

K6 The spot is green.

K2, K4, K5 and K6 are supposed to express atomic facts; K1 and K3 are supposed to be simple

logical products of elementary propositions.

But K1 is a contradiction.  K2 and K5 are incompatible, and K2 entails K3 and K4.  There are

substantial logical relations among these propositions even though they appear to be elementary.  If such

facts are not atomic, then it is hard to see how any facts could be atomic.  The world appears not to be

atomic in the way that the Tractatus depicts.

If the elementary propositions are inter-dependent, it is difficult to see how they could serve as

the foundations of other beliefs.  If the proposition that this spot is green entails that it is not red, and not

purple, and that it is a color, and that spots are incompatible with each other, and so on, I can not just

immediately and securely know a single, simple fact.  Such claims would be comprehensible only en

masse.

The problem of how to understand how elementary propositions can have logical relations among

them has become known as the color incompatibility, or color exclusion, problem.  As Katz observes, the

problem is not merely about color.

It is a general problem about the extralogical vocabulary of the language and about all the

semantic properties and relations of the language (Katz 548).

The problem can be seen in any sentence whose truth seems to be both logical and depending on

the meanings of terms.  BU appears to be a special kind of sentence, one whose truth is guaranteed by its

meaning, like a logical truth.

BU Bachelors are single.

We can regiment BU into predicate logic.

BUr (�x)(Bx e Sx)

But, the logic does not reveal the special status of BU.  There are logical relations among the

terms ‘bachelor’ and ‘single’.  But, the logic we have been studying does not show those relations.  The

atomists, including Wittgenstein and the logical empiricists who followed him, could not accommodate

the relationship between various atomic facts in their logic.
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4.9.3. Meaning Postulates

It might seem rather easy to treat the color incompatibility problem.  We can just adopt

statements like MP1 - MP3 as axioms.

MP1 All bachelors are unmarried.

MP2 Red is a color.

MP3 Red is not blue.

This proposal was explored by Rudolph Carnap, one of the more-prominent of the logical

empiricists.  Propositions like MP1 - MP3 are extra-logical; they are about meanings rather than about

logic.  Carnap’s proposal is that we can stipulate whatever meaning relations we believe to be important.

The stipulation involved in adopting meaning postulates leads to two serious problems.  First, we

would have to adopt a lot of meaning postulates.  Red is not blue, and not green, and not a ball of feta

cheese, and not the Archbishop of Canterbury.  It is not plausible that we believe in any conscious way all

of the required meaning postulates.

Second, and more problematically, a long list of meaning postulates is not an explanation of why

such postulates hold.

Meaning postulates serve as constraints on the assignment of extensions to sentences, but they

cannot explain the property common to the sentences they enumerate.  Like Socrates’s

interlocutors, meaning postulates offer examples of the concept instead of the concept (Katz 553).

This second problem with meaning postulates is subtle, so let’s take a moment to spell it out

carefully.  If I stipulate that no Ps or Qs are Rs, then it will follow that no Ps are Rs.

LT1 (�x)[(Px w Qx) e -Rx)] e (�x)(Px e -Rx)

LT is a logical truth of F.  But, LT holds for any values of P, Q, and R.  LT does not tell us

anything about the relationship between Ps and Rs.  It does not tell us that there is a relationship between

being a P that entails being an R.  It says, for example, that if all blue or green things are not red then all

blue things are not red.  But, we want an explanation of the relationship between blue and not red.  We

want an explanation of the consequent of LT, not merely that it follows from its antecedent as a logical

truth.

Compare LT1 with LT2, which is a logical truth of PL.

LT2 (P e Q) e [(Q e R) e (P e R)]

LT2, like LT1, is not the result of any stipulation.  It is a theorem of our logic.  If meaning

postulates were able to do the work that Carnap wants them to do, they would give the status that LT2

has, and that the entire LT1 has, to just the consequent of LT1.

Using meaning postulates to solve the color incompatibility problem makes sentences K1 - K6

true by stipulation.  But we can stipulate anything we like.  We can adopt scientific postulates about the

world.  We can also adopt axioms governing fictional worlds.  Our use of logic within a system of

postulates does not determine the truth of those postulates.  We want the truth of propositions K1 - K6 to

be true as a matter of the logic of the terms, like LT1 and LT2, rather than as a matter of stipulation, like

the consequent of LT1.
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4.9.4. Semantic Markers

In order to avoid the problems with Carnapian meaning postulates, Katz proposes a constraint on

any solution of the color incompatibility problem.

A new way out must reject Carnap’s assumption that the external, logical structure of extralogical

words is the source of analyticity, contradiction, and analytic entailment in connection with

sentences like [K1 - K6].  It must assume instead that such properties and relations derive from

the internal, sense structure of extralogical words (Katz 553).

Katz proposes that in addition to the mathematical logic of Frege, we need a formal theory of

semantic entailment, one that gets to the analyticity of meanings.  Just as we went beneath the level of the

sentence moving from PL to M , we can move beneath the level of logical form to semantic form.

Katz calls the semantic structural properties of syntactically simple terms (like color terms)

decompositional sense structure.  Senses are meanings.  Decompositional sense structure is not syntactic. 

It depends essentially on meanings, and not the forms of terms.  A term like ‘bachelor’, which is

syntactically simple, can be semantically complex.

The sense of ‘single man’ is complex, being a compositional function of the senses of ‘single’

and ‘man’.  Since ‘single man’ and ‘bachelor’ have the same sense, the sense of ‘bachelor’ is

complex (Katz 555).

Decompositional sense structure is not logical, as the color incompatibility problem shows.  The

consequent of LT1 is nothing like a logical truth.  It is undeniably true on the given interpretation; green

things can not be red.  But, the non-redness of something, while derivable from its greenness, is not a

logical entailment.  It is a semantic entailment.

In order to formalize the notion of semantic entailment, Katz introduces a technical device he

calls semantic markers.  Semantic markers allow us to analyze concepts, like of being particular color, in

such a way as to reveal the entailments like the ones expressed in K1 - K6.  I will not pursue the complex

details of Katz’s device, here.

Katz uses semantic markers to represent the decompositional sense structure of what appeared to

Wittgenstein to be elementary propositions  ‘This spot is blue’ is not a semantically elementary

proposition; it presupposes a variety of analytic entailments.  On Katz’s analysis, blueness can still be a

primitive sense, in that it is not definable in terms of other senses.  But, the primitiveness of the sense

does not entail that it is semantically simple.  It has analytic relations with other senses, despite being

primitive.  Katz calls the senses of basic color terms complex primitive senses.  They are primitive in that

they are not reducible to other senses.  They are complex, since they have semantic relations to other

senses.  Senses are thus both inside and outside of logic.  Sense entailments are additional to logical ones.

But, they constrain logic, since they guide entailments.

Since senses provide the fine-grained linguistic structure necessary for a model-theoretic

explanation of why such sentences have such logical properties and relations, senses are inside

logic in precisely Wittgenstein’s sense of “hav[ing] an effect on one proposition’s following from

another” (Katz 572).

Katz’s semantic markers have not caught on in the philosophical community at large.  While they

are patterned after Noam Chomsky’s syntactic theories of language, they are much more contentious. 

Many philosophers are wary of meanings.  Senses are objective, in that they transcend any particular

thinker or language user.  But they are not the kinds of things that we can perceive with our senses.  Thus,
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some philosophers think of them as spooky entities.  Still, senses give us a way of understanding the

semantic relations among terms without abandoning Wittgenstein’s atomism.

The more popular response to Wittgenstein’s problem is holistic, abandoning the atomism of the

logical empiricists and Katz’s concept of semantic primitives.  Many of the more prominent holists, like

Quine, also deny the existence of meanings.

4.9.5. Logical Empiricism and Holism

Color incompatibility is a puzzle for both Wittgensteinian atomists and the logical empiricists that

followed Wittgenstein because it looks as if there is a logical relationship between various atomic facts. 

To see how the problem manifests itself for logical empiricism, we need to look more closely at the

broader aims of that philosophical movement.

The logical empiricists saw Wittgenstein’s picture theory as accommodating a scientific view of

the world.  Scientific laws, for example, were mere generalization over, and reducible to, the separable

atomic facts.  The logical empiricists believed that all our legitimate claims could be traced to a core set

of simple observations.

There is a class of empirical propositions of which it is permissible to say that they can be

verified conclusively.  It is characteristic of these propositions, which I have elsewhere called

“basic propositions,” that they refer solely to the content of a single experience, and what may be

said to verify them conclusively is the occurrence of the experience to which they uniquely

refer...Propositions of this kind are “incorrigible,”...[in that] it is impossible to be mistaken about

them except in a verbal sense (Ayer, Language Truth and Logic, p 10).

The logical empiricists claimed that all of science and philosophy could be founded on the basis

of observation statements in conjunction with the logical and mathematical principles used to regiment

and derive those observations.  Claims that are not observable may be derived from the axiomatic

observations, or introduced by definition.  Lastly, some claims, like logical truths, are neither observable

nor derivable from observable claims.  Hume called such claims relations of ideas.  The logical

empiricists called them analytic truths.  Among the analytic truths were supposed to be logical truths and,

for logicists like Frege and Russell, the truths of mathematics.  For the logical empiricists, all and only

meaningful statements will be either analytic, observable, or derivable (using logic) from observable

axioms.

A fundamental presupposition of logical empiricism, then, is that one can make a clear distinction

between an observation statement and an analytic one.  This distinction was rooted in Wittgenstein’s

distinction between sensible statements and logical nonsense.  Let’s take a moment to look at that

distinction.

One of the most important advances in modern logic was its ability to characterize a broad,

general concept of logical truth.  Logical truths of PL are tautologies, complex statements which are true

no matter the truth values of their component variables.  Logical truths of F are true on any interpretation.

We might characterize logical truths as necessary truths.  Descartes, for example, believed that

the certainty of logic and mathematics provided essential support to his claim that our minds have

substantial content built into their structures.  From the claim that logic and mathematics are innate, it is

reasonable to ask whether there are other innate ideas, including the idea of God.

Wittgenstein thought that characterizing logical truths as necessary imbues them with too much

importance.  In contrast, he called them nonsense.  The only statements that can picture the world are

those that have sense, that can be either true or false, that can picture accurately or not.  Tautologies are

empty of content.
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§4.46. The proposition shows what it says, the tautology and the contradiction that they say

nothing.  The tautology has no truth conditions, for it is unconditionally true; and the

contradiction is on no condition true.  Tautology and contradiction are without sense.

§6.1251. Hence, there can never be surprises in logic.

Logical truths are unknowable because they are too thin to be objects of knowledge.  They don’t

picture any fact.  Wittgenstein wanted carefully to circumscribe what we can know.

The logical truths were, for Wittgenstein, logical nonsense.  The logical empiricists called them

merely analytic.  All agreed that they were easily derivable within formal logic.  Analytic truths were

sharply contrasted with synthetic ones, which had to trace back, or reduce, in some way, to observation. 

Indeed, the whole of the atomist movement, from Locke and Hume through Wittgenstein and the logical

empiricists rests on this distinction between analytic and synthetic propositions.

Quine attacked the logical empiricist’s distinction between analytic and synthetic statements by

arguing for holism.  Holism is the denial of atomism.  The holist claims that there are no individual

statements which independent of larger theories.  Just as the color facts, K1 - K6, were not independent,

all claims are inter-related.

Our statements about the external world face the tribunal of sense experience not individually but

only as a corporate body (“Two Dogmas of Empiricism” 41).

Where the atomist like Wittgenstein applies Frege’s logic to atomic, elementary propositions, the

holist despairs of finding any simple facts.  The holist denies that there is any real difference between

analytic and synthetic claims, between truths of logic and empirical truths.

It is obvious that truth in general depends on both language and extralinguistic fact. The

statement “Brutus killed Caesar” would be false if the world had been different in certain ways,

but it would also be false if the word “killed” happened rather to have the sense of “begat.”

Hence, the temptation to suppose in general that the truth of a statement is somehow analyzable

into a linguistic component and a factual component. Given this supposition, it next seems

reasonable that in some statements the factual component should be null; and these are the

analytic statements. But, for all it’s a priori reasonableness, a boundary between analytic and

synthetic statements simply has not been drawn (Quine, “Two Dogmas of Empiricism,” 70).

Our knowledge of synthetic propositions is supposed to be rooted in our sense experience of

particular facts.  But the particular beliefs that are supposed to be the starting points of our knowledge, the

foundations, seem not to be independent.  That is a lesson of the color incompatibility problem. 

Knowledge of purportedly-atomic facts seems to require, or presuppose, the understanding of a whole

battery of other facts that come along with them.  Knowledge that this spot is green entails knowledge

that green is a color, that this spot is not red, and so on.  This problem seems to undermine the claim that

any atomic fact is given, as a foundational belief.  If the basic facts are interconnected, they could not

possibly be immediately perceivable.  They would only be comprehensible as whole systems of claims, a

larger theory, a corporate body.

This problem with the analytic/synthetic distinction, call it the holistic insight, is related to the

inter-connectedness of individual statements we saw in the color incompatibility problem.  Individual

statements depend for their truth on a broader theory, in contrast to Wittgenstein’s atomism.  Hempel,

another prominent logical empiricist, applied the holistic insight to his account of scientific reasoning.
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In the language of science, and for similar reasons even in prescientific discourse, a single

statement usually has no experiential implications.  A single sentence in a scientific theory does

not, as a rule, entail any observations sentences; consequences asserting the occurrence of certain

observable phenomena can be derived from it only by conjoining it with a set of other, subsidiary,

hypotheses (Hempel, “Empiricist Criteria of Cognitive Significance: Problems and Changes,”

56).

Wittgenstein and the logical empiricists presented a system on which individual sentences,

pictures of states of affairs, were verified or disconfirmed on their own.  Then, they could be connected

by logic into a larger theory.  The holist’s claim is that the meaning of a single expression is elliptical,

incomplete on its own.  It requires, for its meaning, reference to an entire linguistic framework, a

theoretical context which forms the background to that expression.

If...cognitive significance can be attributed to anything, then only to entire theoretical systems

formulated in a language with a well-determined structure (Hempel, “Empiricist Criteria of

Cognitive Significance: Problems and Changes,” 57).

Hempel here alludes to what has come to be known as semantic holism: the unit of empirical

significance is not the individual sentence, but the entire theory.  Holism comes in a variety of forms. 

Most strong, semantic holism claims that the meaning of any term or sentence depends on the meanings

of all of our sentences.  Meaning is a property of an entire language, not of individual terms.  Less

contentiously, confirmation holism claims that individual sentences are confirmed or refuted only by

whole theories, not individually.  Confirmation holism is a logical fact about sets of sentences.  Even two

contradictory sentences are compatible in the absence of a larger theory which prohibits contradiction.

Quine holds both the stronger semantic holism and the less-contentious confirmation holism. 

Wilfrid Sellars argues that the holistic conclusion is not merely about colors, and observation reports of

them.

It follows, as a matter of simple logic, that one couldn’t have observational knowledge of any fact

unless one knew many other things as well (Sellars, “Does Empirical Knowledge Have a

Foundation?” 123).

If holism, even in its weak form, is correct, then the presupposition of atomism that some of our

beliefs can serve as unassailable foundations for the rest of our beliefs is false.  Holist criticisms

undermine any given-ness of our purportedly basic beliefs.  Given the constraints on knowledge, we

could not know any particular fact unless we already knew a broader swath of background facts.  We

could not know that a spot is green unless we already knew that green is a color, that a spot which is

green is not red, and so on.

One couldn’t form the concept of being green, and, by parity of reasoning, of the other colors,

unless he already had them (Sellars, “Does Empirical Knowledge Have a Foundation?” 120).

If knowing that this spot is green requires prior knowledge of a larger background theory, it

becomes difficult to see how one could come to know anything at all.  The holist, then, has a strong

critical argument against the atomist, but creates what seems to be an even-more intractable problem.
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4.9.6. Summary

We have looked at two different kinds of responses to the color incompatibility problem.  Carnap

and Katz attempt to save atomism by exploring the logic of semantic entailments.  Given first-order logic,

there is no formal representation of the connections among K1 - K6.  But, we can extend our logic so that

there is a formal representation of those entailments.

In contrast, holists like Quine, Sellars, and Hempel give up the belief that there are elementary

propositions.  Quine, indeed, gives up on the idea that there are senses.  Quine denies that there are any

logical connections among K1 - K6.  Instead, he believes that the connections are loose, at best causal

connections.

These topics are far too broad to be considered in proper depth, here.  We have reached the edge

of logic and breached the barrier to the philosophy of language.

Paper Topics

1. The logical empiricists were epistemic foundationalists, seeking to explain all of human knowledge on

the basis of some secure, fundamental beliefs.  Some critics of foundationalism, inspired by Quinean

holism, defend coherentism in epistemology.  Compare the two kinds of epistemologies.  Sosa, Sellars,

Ayer and Quine would all be good readings.

2. In “Two Dogmas of Empiricism,” Quine argues against the logical empiricist’s reductionism.  Evaluate

Wittgenstein’s project in light of Quine’s criticisms.  See Melchert for a good discussion of the

Tractatus’s project, as well as Ayer.

3. Do meaning postulates solve the color incompatibility problem?  See Carnap’s article, as well as

Quine’s response in “Two Dogmas of Empiricism.”

4. What are semantic markers?  How do they attempt to solve the color incompatibility problem?  In

addition to the discussion in “The Problem...,” see Katz’s Semantic Theory.

5. How does the color incompatibility problem shift Wittgenstein away from his original project.  Work

through his “Remarks on Logical Form.”  See Allaire and/or Austin, as well.

6. What is the logical form of a sentence?  Are there solutions, other than Carnap’s, to the color

incompatibility problem that rely on logical form?  See the Pietroski article.
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 The presentation here follows Mendelson 1997, but with adjustments.5

§10: Second-Order Logic and Set Theory

4.10.1. Set Theory

At the end of Chapter 3, I introduced higher-order logics and noted that the language S was

controversial.  Many philosophers have argued that higher-order logics are not really logic.  Perhaps most

influentially, Quine calls second-order logic, “set theory in sheep’s clothing” (Philosophy of Logic, p 66). 

Some philosophers, like Quine, take first-order logic with identity as a canonical language, the privileged

language used for expressing one’s most sincere beliefs and commitments.  Many philosophers see the

step from first-order logic to second-order logic as breaching a barrier.

As I mentioned in §3.11 when introducing the identity predicate, the line between logical and

non-logical claims is not always clear or obvious.  Most people take identity to be a logical relation.  Most

people take set theory to be mathematical.  But, the difference between first-order logic and some

versions of set theory is mainly just the inclusion of one symbol, å, used for set-inclusion, and a few basic

principles which govern that relation.  These principles, the axioms of set theory, are very powerful.  But,

they are neatly presentable iin a compact form.

There are a wide variety of formulations of basic set theory.  Some of these formulations differ in

their consequences.  There is dispute among mathematicians over which basic set theory is correct.  There

is dispute over whether there is a correct set theory.  And, beyond basic set theory, there are lots of

controversial extensions.  These topics are for another place.  Our interest in set theory is mainly just to

consider the question of whether higher-order logics are logical, as many neo-Fregeans believe, or

mathematical, as Quine believes.

For the purposes of our discussion, then, we can consider one simple set of axioms of set theory,

which is standardly called ZF. 

Zermelo-Fraenkel Set Theory5

Substitutivity: (�x)(�y)(�z)[y=z e (y0x / z0x)]

Pairing: (�x)(�y)(�z)(�w)[w0z / (w = x w w = y)]

Null Set: (�x)(�y)-x0y

Sum Set: (�x)(�y)(�z)[z0y / (�w)(z0w C w0x)]

Power Set: (�x)(�y)(�z)[z0y / (�w)(w0z e w0x)]

Selection: (�x)(�y)(�z)[z0y / (z0x C öu)], for any formula ö  not containing y as

a free variable

Infinity: (�x)(a0x C (�y)(y0x e Sy0x)

Note that In addition to å, the axiom of infinity uses ‘a’ for the empty set, whose existence is

guaranteed by the null set axiom, and ‘S’ for the function, ‘yc{y}’, the definitions for the components of

which are standard.  ‘S’ is a successor function, essential to mathematics.  In arithmetic, the successor

function is used to generate the natural numbers.  In ZF, we use it to generate an infinite set of sets.

Almost all of what we consider to be mathematics is derivable, with the addition of further

definitions, from the axioms of ZF.  Let’s take a moment to sketch how the powerful tools of the real

numbers can be constructed out of set theory.  The discussion in this section will get just a little bit

technical, but only the general form of the sketch is most important.  You can easily skip to the next

subsection on logicism.

First, we can define the natural numbers within set theory using any of various standard

constructions, like those of Zermelo or Von Neumann.  (Remember, ‘a’ stands for the empty set.)
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Zermelo:

0 = a

1 = {a}

2 = {{a}}

3 = {{{a}}}

...

Von Neumann

0 = a

1 = {a}

2 = {a, {a}}

3 = {a, {a}, {a, {a}}}

...

Using the Peano axioms (see 3.13.16) and the notion of an ordered pair, we can define standard

arithmetic operations, like addition and multiplication.  We can define the integers, Z, in terms of the

natural numbers by using subtraction.  Since -3 is 5-8, we can define -3 as the ordered pair <5,8>.  But -3

could also be defined as <17,20>.  To avoid ambiguity, we take the negative numbers to be equivalence

classes of such ordered pairs.  The equivalence class for subtraction is defined using addition: <a,b> ~

<c,d> iff a + d = b + c, where <a,b> ~ <c,d> indicates that <a,b> is in the same equivalence class as

<c,d>.  So, we can define Z = ...-3, -2, -1, 0, 1, 2, 3... in terms of ù, addition, and the notion of an ordered

pair.

The rationals, Q , can be defined in terms of the integers, Z, by using ordered pairs of integers.

a/b::<a,b>, where ‘<a,b> ~ <c,d> iff ad = bc’ is the identity clause.  The real numbers, ú, are

differentiated from the rationals by their continuity.  Both the rationals and the reals are dense: between

any two there is a third.  The reals are also continuous.  There are again a variety of ways to define

continuity set-theoretically.  In the nineteenth century, mathematicians including Bolzano, Cauchy, and

Weierstrass pursued the arithmetization of analysis.  Part of their achievement was the epsilon-delta

definition of continuous functions, due to Weierstrass in the 1860s, but based on ideas from Cauchy,

1821.

a function f(x) is continuous at a if for any å > 0 (no matter how small) there is a ä > 0 such that 

for all x such that |x ! a| <  ä, |f(x) ! f(a)| < å.

From this definition, we can find a definition of limits.

A function f(x) has a limit L at a if for any å > 0 there is a ä > 0 such that 

for all x such that |x ! a| <  ä, |f(x) ! f(a)| < å.

The å-ä definition of limits is arithmetic.  In addition to the arithmetic definitions of continuity

and limits, Weierstrass, Dedekind, and Cantor pursued more rigorous definition of the reals, in terms of

the rationals.  Dedekind’s derivation, from 1872, for example, relied on the concept a cut, which has

become known as a Dedekind cut.  The real numbers are identified with separations of the rationals, Q ,

1 2 1into two sets, Q  and Q , such that every member of Q  is less than or equal to the real number and every

2member of Q  is greater.  So, even though  is not a rational, it divides the rationals into two such

sets.  Not all cuts are produced by rational numbers.  So, we can distinguish the continuity of the reals

from the discontinuity of the rationals on the basis of these cuts.  Real numbers are thus defined in terms

of sets of rationals, the set of rationals below the cut.  These sets have no largest member, since for any
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rational less than , for example, we can find another one larger.  But, they do have an upper bound in

the reals (i.e. the real number being defined).

By adding a definition of the real numbers in terms of the rational numbers to our definitions of

the rationals in terms of the natural numbers, we have defined the reals in terms of the natural numbers. 

Such definitions do two things.  First, they make it clear that infinitesimals and real numbers are defined

using methods that human beings could naturally employ.  They do not require controversial infinitistic

inferences.  Second, they make it plausible that we can reduce the problem of justifying our knowledge of

mathematics to the problem of justifying our knowledge of just natural numbers.  We have an ontological

reduction of the objects of analysis to the objects of number theory: we need not assume the existence of

any objects beyond the natural numbers in order to model analysis.  And, we need not assume the

existence of any objects beyond sets in order to model the natural numbers. 

4.10.2. Logicism

The axioms of set theory are powerful indeed, strong enough to ground, in some sense, perhaps

all of mathematics.  The question facing us is whether they are logical.  Is set theory a logical theory? 

Frege’s grand project, the one for which his original Begriffsschrift was developed, is that mathematics is

just logic in complicated disguise.

Arithmetic...becomes simply a development of logic, and every proposition of arithmetic a law of

logic, albeit a derivative one (Frege, Grundlagen §87).

Frege’s claim is called logicism.  Logicism is the intellectual heir of Leibniz’s late-seventeenth/

early-eighteenth century proposal to reduce all propositions to elementary identities.  Frege’s argument

for logicism mainly rests on his attempt to define the natural numbers merely by using logic.  His project

of reducing mathematics to logic thus requires two steps.  One step is the reduction of the theory of

natural numbers to logic.  The other step of Frege’s argument is the reduction of all of the rest of

mathematics to the theory of natural numbers.  In the last section, I sketched how mathematics is

reducible to set theory.  Frege thought that set theory was really just a logical theory. 

The present work will make clear that even an inference like that form n to n + 1, which on the

face of it is peculiar to mathematics, is based on the general laws of logic, and that there is no

need of special laws for aggregative thought (Frege, Grundlagen iv).

Set theory was a field in its infancy in Frege’s time.  Axiomatizations were only developed later,

largely in response to problems arising from Frege’s work.  Definitions of numbers in terms of sets, like

those of Zermelo and Von Neumann, above, were not yet available.  So Frege defined the numbers using

some basic principles which he took to be obvious, and thus logical.  He established definitions of one-

one correspondence, the property of having the same number as, number, zero, successor, and natural

number.  From these definitions, he derived definitions of each individual number.  In the Grundlagen, he

sketched these definitions and derivations.  In the Grundgesetze, he developed the derivations fully.

The short explanation of Frege’s definitions of numbers is that he took numbers to be certain

kinds of sets, indeed sets of sets.  More precisely, Frege took sets to be logical objects, extensions of

predicates.  The extension of a concept is the set of things which fall under that concept, or which have

that property.  Frege believed that the concept of the extension of a predicate is more precise than the

concept of a set.

For one-one correspondence and the property of having the same number as, Frege relied on

Hume’s principle.
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We have to define the sense of the proposition “the number which belongs to the concept F is the

same as that which belongs to the concept G”...  In doing this, we shall be giving a general

criterion for the identity of numbers.  When we have thus acquired a means of arriving at a

determinate number and of recognizing it again as the same, we can assign it a number word as

its proper name.  Hume long ago mentioned such a means: “When two numbers are so combined

as that the one has always an unit answering to every unity of the other, we pronounce them

equal” (Frege, Grundlagen §§62-3).

To define ‘number’, Frege relied directly on extensions of concepts.

The number which belongs to the concept F is the extension of the concept “equal to the concept

F” (Frege, Grundlagen §68).

Frege supposed that concepts are objects of thought.  They are intermediary between objects and

thoughts.  When I think of a bluebird, there may or may not be any bluebird of which I am thinking.  I can

think of objects that don’t exist, like the elephant standing on my head.  I think of the concept of the

elephant even in the absence of any elephant.  So, concepts are not just elephants or bluebirds.  Moreover,

you and I may both think of bluebirds even though our particular thoughts are different.  So, concepts are

not our individual, subjective thoughts.  They are objective but not physical.

Frege’s definitions of number tell us when a number belongs to a concept.  But numbers are

objects themselves, not merely properties of concepts.  Frege must provide a definition of the number

terms without appealing merely to when they hold of concepts.  To do, he argues that numbers are

second-order extensions, extensions of extensions.  In particular, numbers are extensions of all extensions

of a particular size.  In set-theoretic terms, they are sets of sets.  Two is the set of all two-membered sets.

For Frege, 0 belongs to a concept if nothing falls under the concept.  Thus, Frege can define zero

by appealing to a concept with no extension.

0 is the Number which belongs to the concept “not identical with itself” (Frege, Grundlagen §74).

Again in set-theoretic terms, 0 is the set of all sets which are not identical to themselves (i.e. the

number of x such that x�x).  The definitions of the rest of the numbers can be generated inductively,

using the successor definition.

“There exists a concept F, and an object falling under it x such that the Number which belongs to

the concept F is n and the Number which belongs to the concept ‘falling under F but not identical

with x’ is m” is to mean the same as “n follows in the series of natural numbers directly after m”

(Frege, Grundlagen §76.)

The number one applies to a concept if that concept a) applies to at least one thing; and b) if it

applies to two things, they are the same thing.  In our notation: (�!x)Fx  W  (�x)[Fx C (�y)(Fy e y=x)] 

The number one then may be defined as the number which belongs to the concept ‘identical to zero’,

since there is only one concept zero.  More succinctly, one is the set of all one-membered sets; two is the

set of all two-membered sets.

Frege’s logicist project, as he originally conceived it, was devastated by a paradox devised by

Bertrand Russell.  Russell sent word of the paradox to Frege just as the second volume of the

Grundgesetze was being published.  Frege added an attempt to avoid the paradox, but it was, in the end,

unsuccessful.  Russell worked out a more thorough, if not fully intuitive, way to avoid the paradox, and

used it in his Principia Mathematica.

The source of Russell’s paradox is Frege’s use of an unrestricted axiom of comprehension. 
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Frege’s logic can be called naive set theory, for its use of an axiom of comprehension (or abstraction). 

The axiom of comprehension says that any property determines a set.  For Frege, the relevant version is

that every predicate has an extension.  Frege adds this comprehension claim to his treatment in the 

Grundgesetze, as Axiom 5.

Axiom 5 {x*Fx} = {x*Gx} / (�x)(Fx / Gx)

Axiom 5 leads to Proposition 91.

Proposition 91 Fy / y 0 {x*Fx}

Axiom 5 says that the extensions of two concepts are equal if and only if the same objects fall

under the two concepts.  In other words, the set of Fs and the set of Gs are identical iff all Fs are Gs. 

Proposition 91 says that a predicate F holds of a term iff the object to which the term refers is an element

of the set of Fs.  Both statements assert the existence of a set of objects which corresponds to any

predicate, though this claim could be made more explicitly with a higher-order quantification.

To derive Russell’s paradox, take F to be ‘is not an element of itself’.  So, x is not element of

itself is expressed as 1.

1 x ó x (which is short for ‘-x0x’)

Now, take y to be the set of all sets that are not elements of themselves, as at 2.

2  y = {x*xóx}

Substitute ‘{x*xóx}’ for y, and the property of not being an element of itself for F in Proposition

91.  On the left, you get 3.

3  {x*xóx} ó{x*xóx} 

On the right side you get 4.

4  {x*xóx} 0 {x*xóx}

Putting the two sides together, you get Russell’s paradox, RP.

RP {x*xóx} ó{x*xóx}  / {x*xóx} 0 {x*xóx}

RP is of the form ‘-P / P’.  For those of you who like their contradictions in the form á C -á,

note the derivation RPC.
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RPC 1. -P / P

2. (-P e P) C (P e -P) 1, Equiv

3. -P e P 2, Simp

4. P e -P 2, Simp

5. -P w -P 4, Impl

6. P w P 3, Impl, DN

7. -P 5, Tautology 

8. P 6, Tautology

9. P C -P 8, 7, Conjunction

QED

In current axiomatic set theory, like ZF, we avoid we avoid the paradoxes of unrestricted

comprehension by building sets iteratively.  We start with a few basic axioms, and build up the rest from

those.  We thus use what is called an iterative concept of set.  We iterate, or list, the sets from the most

simple.

Russell’s solution to the paradoxes is to introduce a theory of types.  According to the theory of

types, a set can not be a member of itself.  ZF provides a similar solution in that there is no way to

generate the problematic sets.  Frege was able to argue that mathematics reduced to logic because he

claimed just the basic insight that every property determined a set.  But both Russell’s solution and ZF

substitute a substantive set theory for Frege’s original logical insight.  Set theory does not appear to be a

logical theory, but a mathematical theory.  Thus, given the paradoxes, Frege was able to show that

mathematics is reducible to mathematics (i.e. set theory), but not to logic.

4.10.3. Second-Order Logic

The question we are pursuing is whether second-order logic is logic or mathematics.  We are

taking set theory to be mathematics and F, for example, to be logic.  When we interpret F, we specify a

domain for the variables to range over.  Sometimes we use restricted domains.  If we want to interpret

number theory, for example, we restrict our domain to the integers.  If we want to interpret a biological

theory, we might restrict our domain to species.  For our most general reasoning, we take an unrestricted

domain: the universe, everything there is.  Consider BH.

BH There are blue hats. (�x)(Bx. C Hx)

On standard semantics, for BH to be true there must exist a thing which will serve as the value of

the variable ‘x’, and which has both the property of being a hat and being blue.  As Quine says, to be is to

be the value of a variable.  Our most sincere commitments arise from examining the domain of

quantification for our best theory of everything.

Now, consider a sentence of second-order logic, SP.

SP Some properties are shared by two people.

(�X)(�x)(�y)(Px C Py C x�y C Xx C Xy)

For SP to be true, there must exist two people, and there must exist a property.  The value of the

variable ‘X’ is not an ordinary object, but a property of an object.  By quantifying over properties, we

take properties as kinds of objects; we need some thing to serve as the value of the variable.

We could take the objects which serve as the values of predicate variables to be Platonic forms, or

eternal ideas.  But commitments to properties, in addition to the objects which have those properties, is
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metaphysically contentious.  The first-order sentence about blue hats referred only to an object with

properties.  The second-order sentence reifies properties.  Is there really blueness, in addition to blue

things?

The least controversial way to understand properties is to take them to be sets of the objects

which have those properties.  We call this conception of properties extensional.  On an extensional

interpretation, ‘blueness’ refers to the collection of all blue things; the taller-than relation is just the set of

ordered pairs all of whose first element is taller than its second element.  Thus, second-order logic at least

commits us to the existence of sets.  Second-order logic, in its least-controversial interpretation, is some

form of set theory.

We might want to include sets in our ontology if we think there are mathematical objects.  But,

we need not include them under the guise of second-order logic.  We can instead take them to be values

of first-order variables.  We can count them as among the objects in the universe, in the domain of

quantification, rather than sneaking them in through the interpretations of second-order variables. 

Quine’s complaints about second-order logic, that it is set theory in sheep’s clothing, are based on this

sneakiness.

In favor of second-order logic, it is difficult to see how one could regiment sentences like many

of those in §3.14 in first-order logic.

3.14.3 No two distinct things have all properties in common.

(�x)(�y)[x�y e (�X)(Xx C -Xy)]

3.14.4 Identical objects share all properties.

(�x)(�y)[x=y e (�Y)(Yx / Yy)]

3.14.9 Everything has some relation to itself.

(�x)(�V)Vxx

3.14.10 All people have some property  in common.

(�x)(�y)[(Px C Py) e (�Y)(Yx C Yy)]

3.14.11 No two people have every property in common.

(�x)(�y)[(Px C Py) e (�Z)(Zx C -Zy)

3.14.15 Some relations are transitive.

(�X)(�x)(�y)(�z)[(Xxy C Xyz) e Xxz]

3.14.16 Some relations are symmetric, while some are asymmetric.

(�X)(�x)(�y)(Xxy e Xyx) C (�X)(�x)(�y)(Xxy e -Xyx)

The possibility of deriving the properties of identity from the second-order axioms, rather than

introducing a special predicate with special inferential properties, is especially tempting.

3.14.17 x=y  W  (�X)(Xx / Xy)

Some philosophers favor using schematic predicate letters in lieu of predicate variables.  With

schematic letters, we regiment the law of the excluded middle, for example, as LEMS, rather than 3.14.6,

with the understanding that any wff of F can be substituted for ‘á’.

LEMS á w -á

3.14.6 (�X)(X w -X)

Schematic letters are metalinguistic variables.  What those who favor schematic letters to second-

order logic are really admitting is that we can not formulate claims like LEMS in our canonical language. 

We must, instead, ascend to a metalanguage, using metalinguistic variables.

So, it does seem that second-order logic is some form of set theory.  Precisely what form of set
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theory it is depends on the semantics for the specific language of second-order logic we adopt.  That is a

topic for elsewhere.  Given that second-order logic is some type of set theory, the question to ask is

whether that is a problem for the language.  Does its value in expressing some natural claims and their

inferences outweigh its controversial ontological commitments?  What exactly differentiates logic and

mathematics?  Is there a firm line between the disciplines?  What is the purpose of logic?  Is there one

right logic?

This textbook, especially the first three chapters, covers themes which philosophers sometimes

call baby logic.  To try to answer any of the questions in the previous paragraph, one must explore the

more-mature logics.  This book is an introduction to a vast and burgeoning field, one which raises many

important questions about human reasoning, ontology, epistemology, and other philosophical topics. 

More importantly, mastering the content should give you the tools to work on philosophy the way in

which many contemporary philosophers do.

Paper Topics

1. Is there a correct logic?  The debate over second-order logic is one aspect of a larger question of

determining a canonical language, and whether there even is such a best language.

2. What differentiates logic and mathematics?  

3. What is the purpose of logic?

Suggested Readings

Quine’s objections to second-order logic are found in his Philosophy of Logic, among other

places; he has good discussions of schematic letters in his Methods of Logic.  Stewart Shapiro makes a

compelling case against Quine and for second-order logic in his Foundations without Foundationalism: A

Case for Second-Order Logic. 

Boolos, George.  1975.  “On Second-Order Logic.” The Journal of Philosophy 72: 509–527.

Quine, W.V. Philosophy of Logic, 2  ed.  Harvard University Press, 1986.nd

Shapiro, Stewart.  1991.  Foundations without Foundationalism: A Case for Second-Order Logic.  

Oxford: Oxford University Press.

Simpson, Stephen, 1999.  Subsystems of Second Order Arithmetic.  Berlin: Springer.

Väänänen, Jouko, 2001.  “Second-Order Logic and Foundations of Mathematics.”  The Bulletin of

Symbolic Logic 7: 504–520.

Arché have an excellent bibliography on second-order logic:

http://arche-wiki.st-and.ac.uk/~ahwiki/bin/view/Arche/SecondOrderLogic

http://arche-wiki.st-and.ac.uk/~ahwiki/bin/view/Arche/SecondOrderLogic
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Summary of Rules and Terms

Names of Languages

PL: Propositional Logic

M : Monadic (First-Order) Predicate Logic

F: Full (First-Order) Predicate Logic

FF: Full (First-Order) Predicate Logic with functors

S: Second-Order Predicate Logic

Basic Truth Tables

- á

0 1

1 0

á @ â

1 1 1

1 0 0

0 0 1

0 0 0

á w â

1 1 1

1 1 0

0 1 1

0 0 0

á e â

1 1 1

1 0 0

0 1 1

0 1 0

á / â

1 1 1

1 0 0

0 0 1

0 1 0

Rules of Inference

Modus Ponens (MP)

á e â

á / â

Modus Tollens (MT)

á e â

-â / -á

Disjunctive Syllogism (DS)

á w â

-á / â

Hypothetical Syllogism (HS)

á e â

â e ã / á e ã

Conjunction (Conj)

á

â / á A  â

Addition (Add)

á / á w â 

Simplification (Simp)

á A â / á

Constructive Dilemma (CD)

(á e â) @ (ã e ä)

á w ã / â w ä
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Rules of Equivalence

DeMorgan’s Laws (DM)

-(á A â)  W  -á w -â

-(á w â)  W  -á A -â

Association (Assoc)

á w (â w ã)  W  (á w â) w ã

á A (â A ã)  W  (á A â) A ã

Distribution (Dist)

á A (â w ã)  W  (á A â) w (á A ã)

á w (â A ã)  W  (á w â) A (á w ã)

Commutativity (Com)

á w â  W  â w á

á A â  W  â A á

Double Negation (DN)

á  W  --á

Contraposition (Cont)

á e â  W  -â e -á

Material Implication (Impl)

á e â  W  -á w â

Material Equivalence (Equiv)

á / â  W  (á e â) A (â e á)

á / â  W  (á A â) w (-á A -â)

Exportation (Exp)

á e (â e ã)  W  (á A â) e ã

Tautology (Taut)

á  W  á A á

á  W  á w á

Six Derived Rules for the Biconditional

Rules of Inference

Biconditional Modus Ponens (BMP)

á / â

á / â

Biconditional Modus Tollens (BMT)

á / â

-á / -â

Biconditional Hypothetical Syllogism

(BHS)

á / â

â / ã / á / ã

Rules of Equivalence

Biconditional DeMorgan’s Law (BDM)

-(á / â)  W  -á / â

Biconditional Commutativity (BCom)

á / â  W  â / á

Biconditional Contraposition (BCont)

á / â  W  -á / -â
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Rules for Quantifier Instantiation and Generalization

Universal Instantiation (UI)

(�á)öá for any variable á, any formula ö  containing á, and

   öâ any singular term â

Universal Generalization (UG) 

  öâ for any variable â, any formula ö  containing â, and

(�á)öá for any variable á

Never UG within the scope of an assumption for conditional or indirect proof on a

variable that is free in the first line of the assumption.

Never UG on a variable when there is a constant present, and the variable was free when

the constant was introduced.

Existential Generalization (EG)

  öâ for any singular term â, any formula ö  containing â, and

(�á)öá for any variable á

Existential Instantiation (EI)

(�á)öá for any variable á, any formula ö  containing á, and

   öâ any new constant â

Quantifier Equivalence (QE)

(�x)öx  W  -(�x)-öx

(�x)öx W  -(�x)-öx

 (�x)-öx W  -(�x)öx

(�x)-öx W  -(�x)öx
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Rules of Passage

For all variables á and all formulas Ã and Ä:

RP1: (�á)(Ã w Ä) W  (�á)Ã w (�á)Ä
RP2: (�á)(Ã C Ä) W  (�á)Ã C (�á)Ä

For all variables á, all formulas Ã containing á, and all formulas Ä not containing á:

RP3: (�á)(Ä C Ãá)  W  Ä C (�á)Ãá
RP4: (�á)(Ä C Ãá)  W  Ä  C (�á)Ãá
RP5: (�á)(Ä w Ãá) W  Ä  w (�á)Ãá
RP6: (�á)(Ä w Ãá) W  Ä  w (�á)Ãá
RP7: (�á)(Ä e Ãá) W  Ä e (�á)Ãá
RP8: (�á)(Ä e Ãá)  W  Ä  e (�á)Ãá
RP9: (�á)(Ãá e Ä) W  (�á)Ãá e Ä
RP10: (�á)(Ãá e Ä)  W (�á)Ã á e Ä 

Here are versions of each of the rules that are less-meta-linguistic and maybe easier to read:

RP1: (�x)(Px w Qx) W  (�x)Px w (�x)Qx 

RP2: (�x)(Px C Qx) W  (�x)Px C (�x)Qx

RP3: (�x)(öC Px)  W  ö  C (�x)Px

RP4: (�x)(ö  C Px)  W  ö  C (�x)Px

RP5: (�x)(ö  w Px) W  ö  w (�x)Px

RP6: (�x)(ö  w Px) W  ö  w (�x)Px

RP7: (�x)(ö  e Px) W  ö  e (�x)Px

RP8: (�x)(ö  e Px)  W  ö  e (�x)Px

RP9: (�x)(Px e ö) W  (�x)Px e ö

RP10: (�x)(Px e ö)  W (�x)Px e ö

Rules Governing the Identity Predicate (ID)

For any singular terms, á and â:

IDr. Reflexivity: á=á

IDs. Symmetry: á=â W â=á

IDi. Indiscernibility of Identicals

öá 

á=â   / öâ



Solutions to Exercises

Chapter 1

Exercises 1.1

1. P1. Statements are meaningful if they are verifiable.

P2. There are mountains on the other side of the moon.

P3. No rocket has confirmed this, but we could verify it to be true.  

C. The original statement is significant.

2. P1. Everything in nature represents some state of mind. 

P2. This state of mind can be depicted by presenting its natural appearance as a picture.

P3. An enraged man is a lion, a cunning man is a fox, a firm man is a rock, and a learned man is a torch.

P4. Distances behind and in front of us are respectively images of memory and hope.

C. It is not only words that are symbolic, but rather, it is things.

3. P1. As humans, we should believe in the theory that best accounts for our sense experience.

P2. If we believe in a theory, we must believe in its ontological commitments.

P3. The ontological commitments of any theory are the objects over which that theory first-order quantifies.

P4. The theory which best accounts for our sense experience first order quantifies over mathematical

objects.

C. We should believe that mathematical objects exist.

4. P1. The workingman cannot afford to sustain the manliest relations to men.

P2. His work would be minimized in the market.

C. The workingman does not have time for true integrity on a daily basis.

5. P1. It is hard not to verify in our peers the same weakened intelligence due to emotions that we observe in

our everyday patients. 

P2. The arrogance of our consciousness, which in general, belongs to the strongest defense mechanisms,

blocks the unconscious complexes. 

C. It is difficult to convince people of the unconscious and in turn to teach them what their conscious

knowledge contradicts.

6. P1. The passage from one stage to another may lead to long-continued different physical conditions in

different regions.

P2. These changes can be attributed to natural selection. 

C. The dominant species are the most diffused in their own country and make up the majority of the

individuals, and often the most well marked varieties.

7. P1. All of psychology has gotten stuck in moral prejudices and fears. 

P2. No one has come close to understanding it as the development of the will to power. 

P3. However, if a person even begins to regard the affects of hatred, envy, covetousness, and the lust to rule

as conditions of life and furthermore, as factors essential to the general economy of life, he will

begin to get seasick.

P4. At this point, he begins to lose himself, and sail over morality.

C. Psychology becomes again the path to fundamental problems.

8. P1. Man has no choice about his capacity to feel that something is good or evil. 

P2. Man has no automatic knowledge and thus no automatic values.

P3. His values are a product of either his thinking or his evasions. 

C. What he will consider good or evil depends on his standard of value.
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9. P1. Mathematics succeeds as the language of science.  

P2. There must be a reason for the success of mathematics as the language of science. 

P3. No positions other than realism in mathematics provide a reason.

C. We must be realists about mathematics.  

10. P1. The faster you go, the quicker you get to your destination.

P2. As you go faster, time itself becomes compressed.  

P3. But it is not possible to go so fast that you get there before you started. 

C. Local timelines are temporally ordered.  

11. P1. The sphere is the most perfect shape, needing no joint and being a complete whole. 

P2. A sphere is best suited to enclose and contain things.

P3. The sun, moon, plants, and starts are seen to be of this shape. 

C. The universe is spherical.

12. P1. Fools are entirely devoid of the fear of death.

P2. They have no accusing consciences to make them fear it. 

P3. They feel no shame, no solicitude, no envy, and no love. 

P4. They are free from any imputation of the guilt of sin. 

C. The happiest men are those whom the world calls fools.

13. P. It is impossible for someone to scatter his fears about the most important matters if he knows nothing

about the universe but gives credit to myths. 

C. Without the study of nature, there is no enjoyment of pure pleasure.

14. P1. If understanding is common to all mankind, then reason must also be common. 

P2. he reason which governs conduct by commands and prohibitions is common to us. 

C. Mankind is under one common law and so are fellow citizens. 

15. P1. Rulers define ‘justice’ as simply making a profit from the people.  

P2. Unjust men come off best in business.  

P3. Just men refuse to bend the rules.  

C. Just men get less and are despised by their own friends.

16. P1. We ought to take mathematical sentences at face value. 

P2. If we take some sentences to be non-vacuously true, then we have to explain our access to mathematical

objects. 

P3. The only good account of access is the indispensability argument. 

P4. The indispensability argument fails. 

C. We must take non-vacuous mathematical sentences to be false.

17. P1. Labor was the first price, in that it yielded money that was paid for all things.

P2. It is difficult to ascertain the proportion between two quantities of labor.

P3. Every commodity is compared with other exchanged commodities rather than labor.

C. Most people better understand the quantity of a particular commodity, than the quantity of labor.

18. P1. Strength alone is not enough to make a man into a master. 

P2. No man has natural authority over his fellows. 

P3. Force creates no right. 

C. Authority comes from only agreed conventions between men. 
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19. P1. Mathematics is defined as the indirect measurement of magnitude and the determination of magnitudes

by each other. 

P2. Concrete mathematics aims to discover the equations of phenomena. 

P3. Abstract mathematics aims to educe results from equations. 

C. Concrete mathematics discovers results by experiment and abstract mathematics derives results from the

discovered equations and obtains unknown quantities from known.

20. P. Many plants only bear fruit when they do not grow too tall.

C. In the practical arts, the theoretical leaves and flowers must not be constructed to sprout too high, but

kept near to experience, which is their proper soil.

21. P1. The greatest danger to liberty is the omnipotence of the majority. 

P2. A democratic power is never likely to perish for lack of strength or resources, but it may fall because of

the misdirection of this strength and the abuse of resources. 

C. If liberty is lost, it will be due to an oppression of minorities, which may drive them to an appeal to arms.

22. P1. If there is an analytic/synthetic distinction, there must be a good explanation of synonymy.  

P2. The only ways to explain synonymy are by interchangeability salva veritate or definition.  

P3. Interchangeability cannot explain synonymy.  

P4. Definition presupposes synonymy.

C. There is no distinction between analytic and synthetic claims.  

23. P1. The object of religion is the same as that of philosophy; it is the internal verity itself in its objective

existence. 

P2. Philosophy is not the wisdom of the world, but the knowledge of things which are not of this world. 

P3. It is not the knowledge of external mass, empirical life and existence, but of the eternal, of the nature of

God, and all which flows from his nature. 

P4. This nature ought to manifest and develop itself. 

C. Philosophy in unfolding religion merely unfolds itself and in unfolding itself it unfolds religion.

24. P1. That the world is my idea is a truth valid for every living creature, though only man can contemplate it.

P2. In doing so, he attains philosophical wisdom.  

P3. No truth is more absolutely certain than that all that exists for knowledge and therefore this world is

only object in relation to subject, perception of a perceiver.  

C. The world is an idea.

25. P. Every art and every inquiry, and similarly every action and pursuit, is thought to aim at some good.

C. The good has rightly been declared to be that a which all things aim.

26. P1. We should be committed to the entities hypothesized by the mathematics in question. 

P2. There exist genuine mathematical explanations of empirical phenomena. 

C. We should be committed to the theoretical posits hypothesized by these mathematical explanations.

27. P1. By ‘matter’ we are to understand an inert, senseless substance, in which extension, figure, and motion

do actually subsist.  

P2. Extension, figure, and motion are only ideas existing in the mind.

P3. An idea can be like nothing but another idea.

P4. Neither they nor their archetypes can exist in an unperceiving substance.  

C. The very notion of what is called matter, or corporeal substance, involves a contradiction in it.
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28. P1. Reading challenges a person more than any other task of the day. 

P2. It requires the type of training that athletes undergo, and with the same life-long dedication. 

P3. Books must be read as deliberately and reservedly as they were written.

C. To read well, as in, to read books in a true spirit, is a noble exercise. 

29. P1. Love, friendship, respect, and admiration are the emotional responses of one man to virtues of another,

the spiritual payment given in exchange for the personal, selfish, pleasure which one man derives

from virtues of another. 

P2. To love is to value. 

C. The man who does not value himself cannot value anyone or anything.

30. P1. The only course open to one who wished to deduce all our knowledge from first principles would be to

begin with a priori truths. 

P2. An a priori truth is a tautology. 

P3. From a set of tautologies alone, only further tautologies can be further deduced. 

P4. It would be absurd to put forward a system of tautologies as constituting the whole truth about the

universe. 

C. We cannot deduce all our knowledge from first principles.

31. P1. Men, in the state of nature, must have reached some point when the obstacles maintaining their state

exceed the ability of the individual. 

P2. Then the human race must either perish or change. 

P3. Men cannot create new forces, only unite and direct existing ones. 

C. They can preserve themselves by only combining forces great enough to overcome resistance.

32. P1. Physics can be defined as the study of the laws which regulate the general properties of bodies regarded

en masse. 

P2. In observing physics, all senses are used. 

P3. Mathematical analysis and experiments help with observation. 

C. In the phenomena of physics man begins to modify natural phenomena.

33. P1. If there were two indiscernible individuals in our world then there must be another possible world in

which those individuals are switched.

P2. God could have had no reason for choosing one of these worlds over the other.

P3. God must have a reason for acting as she does.

C. There are not two indiscernible individuals in our world. 

34. P1. In aristocratic countries, great families have enormous privileges, which their pride rests on. 

P2. They consider these privileges as a natural right ingrained in their being, and thus their feeling of

superiority is a peaceful one. 

P3. They have no reason to boast of the prerogatives which everyone grants to them without question. 

C. When public affairs are directed by an aristocracy, the national pride takes a reserved, haughty and

independent form.
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35. P1. It must be some one impression, that gives rise to every real idea.  

P2. Self or person is not any one impression, but that to which our several impressions and ideas are

supposed to have a reference.  

P3. If any impression gives rise to the idea of self, that impression must continue invariably the same

through the whole course of our lives, since self is supposed to exist after that manner.  

P4. There is no impression constant and invariable.  

P5. Pain and pleasure, grief and joy, passions and sensations succeed each other and never all exist at the

same time.

P6. It cannot, therefore, be from any of these impressions or from any other that the idea of self is derived.

C. There is no idea of the self.

36. P1. Every violent movement of the will, every emotion, directly agitates the body.  

P2. This agitation interferes with the body’s vital functions.  

C. The body is the objectivity of the will. 

37. P1. The work of the defensive forces of the ego prevents repressed desires from entering the conscious

during waking life, and even during sleep. 

P2. The dreamer knows just a little about the meaning of his dreams as the hysteric knows about the

significance of his symptoms. 

P3. The technique of psychoanalysis is the act of discovering through analysis, the relation between

manifest and latent dream content. 

C. The only way to treat these patients s through the technique of psychoanalysis. 

38. P1. Either mathematical theorems refer to ideal objects or they refer to objects that we sense. 

P2. If they refer to ideal objects, the radical empiricist cannot defend our knowledge of them, since we

never sense such objects. 

P3. If they refer to objects that we sense, they are false. 

P4. For the radical empiricist, mathematical theorems are either unknowable or false. 

C. The radical empiricist cannot justify any proof of a mathematical theorem.

39. P1. The sense or meaning of a term determines its reference. 

P2. It is impossible for terms to differ in extension while having the same intension. 

P3. Reference can vary without variation in thought. 

P4. The senses of terms must be able to vary without variation in thought. 

C. Our thoughts do not determine the meanings of our terms; meanings are not in the head.

40. P1. I have a clear and distinct understanding of my mind, independent of my body. 

P2. I have a clear and distinct understanding of my body, independent of my mind. 

P3. Whatever I can clearly and distinctly conceive of as separate, can be separated by God, and so are really

distinct. 

C. My mind is distinct from my body.
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Exercises 1.2

1. Valid, sound

2. Valid, unsound

3. Invalid

4. Invalid

5. Valid, sound

6. Invalid

7. Valid, sound

8. Invalid

9. Invalid

10. Valid, sound

11. Valid, unsound

12. Valid, unsound

13. Invalid

14. Invalid

15. Valid, sound

16. Invalid

17. Valid, unsound

18. Valid, unsound

19. Invalid

20. Valid, unsound

21. Valid, unsound

22. Valid, sound

23. Invalid

24. Invalid

25. Valid, unsound

26. Valid, unsound

27. Invalid

28. Valid, sound

29. Valid, unsound

30. Valid, sound
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Exercises 1.3a*

1. A

2. -A

3. P C Z

4. P w K

5. M C A

6. P / (D C G)

7. L w -L

8. (F C L) C -C

9. B e W

10. C e M

11. -S w J

12. E / A

13. S / (C w L)

14. H w R

15. P e (C C F)

16. (L C H) w D

17. E w (W C P)

18. (H w L) e E

19. -(M w S)

20. C e (-R C H)

* Some alternate uses of letters are permissible.
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Exercises 1.3b*

1. If Louisa teaches in a middle school, then she teaches either English or history.

2. Louisa teaches English, not history.

3. If Lousia teaches English, then Javier and Suneel do too.

4. If Louisa doesn’t have a Master’s degree then she neither teaches English nor history.

5. If neither Javier nor Suneel teach English, the Louisa teaches history.

6. If Marjorie is a philosophy professor who teaches logic then Jeremy majors in philosophy.

7. If Jeremy is a college student, then he majors in philosophy and psychology.

8. Either Jeremy doesn’t major in both philosophy and psychology or he doesn’t major in physics.

9. If Marjorie is not a philosophy professor who teaches logic, then Jeremy majors in either psychology or physics.

10. Jeremy majors in philosophy if and only if he is a college student and Marjorie is a philosophy professor.

11. If Carolina has a garden then she plants vegetables and flowers.

12. If Carolina has a garden and her plants grow, then deer eat the plants.

13. If Carolina has a garden and her plants grow and she sprays them with pesticide, then the deer do not eat the

plants.

14. If Carolina plants either vegetables or flowers and her plants grow then either she sprays the plants with

pesticides or deer eat the plants.

15. Carolina’s plants don’t grow if and only if she does not spray them with pesticide.

*Alternate formulations are permissible.
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Exercises 1.4a 

1. No

2. No

3. Yes, e

4. Yes, -

5. No

6. No

7. Yes, e

8. No

9. Yes, /

10. Yes, w

11. No

12. Yes, /

13. No

14. Yes, -

15. Yes, e
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Exercises 1.4b

1. C C (P w R)

2. (M C F) e B

3. (O C T) / -R

4. (P w C) w I

5. C e [K C (P C I)]

6. (G C S) e (D C C)

7. (S C C) w (P C D)

8. (S e W) C (C e B)

9.-P C (O C T)

10. M e (P C W)

11. (P C A) C R

12. T e (D / H)

13. (P w D) e (A w R)

14. -D / (-P C -T)

15. (H w T) C (A w R)

16. (M C K) w D

17. P w (C C T)

18. E / (M C T)

19. [S e (-P C -C)] w (R C -D)

20. (T w -S) C C
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Exercises 1.5a

1. False

2. False

3. True

4. True

5. False

6. True

7. True

8. False

9. True

10. False

11. False

12. True

13. False

14. True

15. True

16. True

17. False

18. True

19. True

20. False
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Exercises 1.5b 

1. False

2. True

3. False

4. False

5. Unknown

6. Unknown

7. True

8. True

9. True

10. False

11. True

12. Unknown

13. False

14. False

15. Unknown

16. False

17. Unknown

18. True

19. True

20. False
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Exercises 1.5c

1. True

2. Unknown

3. True

4. True

5. True
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6. True

7. Unknown

8. False

9. True

10. False
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Exercises 1.6a

1. 

A e - A

1 0 0 1

0 1 1 0

2. 

B e (- B e B)

1 1 0 1 1 1

0 1 1 0 0 0

3. 

(C C - C) e C

1 0 0 1 1 1

0 0 1 0 1 0

4. 

(D w - D) / D

1 1 0 1 1 1

0 1 1 0 0 0

5. 

- E e F

0 1 1 1

0 1 1 0

1 0 1 1

1 0 0 0

6. 

G  / - H

1 0 0 1

1 1 1 0

0 1 0 1

0 0 1 0
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7. 

I C (J w I)

1 1 1 1 1

1 1 0 1 1

0 0 1 1 0

0 0 0 0 0

8. 

(K / L) e L

1 1 1 1 1

1 0 0 1 0

0 0 1 1 1

0 1 0 0 0

9. 

(M C N) w - M

1 1 1 1 0 1

1 0 0 0 0 1

0 0 1 1 1 0

0 0 0 1 1 0

10. 

- O w (P e O)

0 1 1 1 1 1

0 1 1 0 1 1

1 0 1 1 0 0

1 0 1 0 1 0

11. 

(Q e R) / (R e Q)

1 1 1 1 1 1 1

1 0 0 0 0 1 1

0 1 1 0 1 0 0

0 1 0 1 0 1 0
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12. 

(S w T) C - (T e S)

1 1 1 0 0 1 1 1

1 1 0 0 0 0 1 1

0 1 1 1 1 1 0 0

0 0 0 0 0 0 1 0

13. 

(U C - V) e (V w U)

1 0 0 1 1 1 1 1

1 1 1 0 1 0 1 1

0 0 0 1 1 1 1 0

0 0 1 0 1 0 0 0

14. 

- [(W w X) C - X] e W

1 1 1 1 0 0 1 1 1

0 1 1 0 1 1 0 1 1

1 0 1 1 0 0 1 0 0

1 0 0 0 0 1 0 0 0

15. 

[(- Y C Z) e Y] w (Y / Z)

0 1 0 1 1 1 1 1 1 1

0 1 0 0 1 1 1 1 0 0

1 0 1 1 0 0 0 0 0 1

1 0 0 0 1 0 1 0 1 0

16.

(A / - B) e [(B w - B) C A]

1 0 0 1 1 1 1 0 1 1 1

1 1 1 0 1 0 1 1 0 1 1

0 1 0 1 0 1 1 0 1 0 0

0 0 1 0 1 0 1 1 0 0 0

17.
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(C w D) e E

1 1 1 1 1

1 1 1 0 0

1 1 0 1 1

1 1 0 0 0

0 1 1 1 1

0 1 1 1 0

0 0 0 1 1

0 0 0 1 0

18.

(F C G) / H

1 1 1 1 1

1 1 1 0 0

1 0 0 0 1

1 0 0 1 0

0 0 1 0 1

0 0 1 1 0

0 0 0 0 1

0 0 0 1 0

19.

- (I w J) C K

0 1 1 1 0 1

0 1 1 1 0 0

0 1 1 0 0 1

0 1 1 0 0 0

0 0 1 1 0 1

0 0 1 1 0 0 

1 0 0 0 1 1

1 0 0 0 0 0
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20.

[L e (M w N)] / L

1 1 1 1 1 1 1

1 1 1 1 0 1 1

1 1 0 1 1 1 1

1 0 0 0 0 0 1

0 1 1 1 1 0 0

0 1 1 1 0 0 0

0 1 0 1 1 0 0

0 1 0 0 0 0 0

21.

[- O C (P e O)] w Q

0 1 0 1 1 1 1 1

0 1 0 1 1 1 0 0

0 1 0 0 1 1 1 1

0 1 0 0 1 1 0 0

1 0 0 1 0 0 1 1

1 0 0 1 0 0 0 0

1 0 1 0 1 0 1 1

1 0 1 0 1 0 1 0

22.

(- R w S) C (- T e R)

0 1 1 1 1 0 1 1 1

0 1 1 1 1 1 0 1 1

0 1 0 0 0 0 1 1 1

0 1 0 0 0 1 0 1 1

1 0 1 1 1 0 1 1 0

1 0 1 1 0 1 0 0 0

1 0 1 0 1 0 1 1 0

1 0 1 0 0 1 0 0 0

23.
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[U e (V e W)] C (V w W)

1 1 1 1 1 1 1 1 1

1 0 1 0 0 0 1 1 0

1 1 0 1 1 1 0 1 1 

1 1 0 1 0 0 0 0 0

0 1 1 1 1 1 1 1 1

0 1 1 0 0 1 1 1 0

0 1 0 1 1 1 0 1 1

0 1 0 1 0 0 0 0 0

24.

[- X / (Y C Z)] e (X w Z)

0 1 0 1 1 1 1 1 1 1

0 1 1 1 0 0 1 1 1 0

0 1 1 0 0 1 1 1 1 1

0 1 1 0 0 0 1 1 1 0

1 0 1 1 1 1 1 0 1 1

1 0 0 1 0 0 1 0 0 0

1 0 0 0 0 1 1 0 1 1

1 0 0 0 0 0 1 0 0 0
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25. 

(A e B) w (C / D)

1 1 1 1 1 1 1

1 1 1 1 1 0 0

1 1 1 1 0 0 1

1 1 1 1 0 1 0

1 0 0 1 1 1 1

1 0 0 0 1 0 0

1 0 0 0 0 0 1

1 0 0 1 0 1 0

0 1 1 1 1 1 1

0 1 1 1 1 0 0

0 1 1 1 0 0 1

0 1 1 1 0 1 0

0 1 0 1 1 1 1

0 1 0 1 1 0 0

0 1 0 1 0 0 1

0 1 0 1 0 1 0
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26. 

(E C - F) e (G w H)

1 0 0 1 1 1 1 1

1 0 0 1 1 1 1 0

1 0 0 1 1 0 1 1

1 0 0 1 1 0 0 0

1 1 1 0 1 1 1 1

1 1 1 0 1 1 1 0

1 1 1 0 1 0 1 1

1 1 1 0 0 0 0 0

0 0 0 1 1 1 1 1

0 0 0 1 1 1 1 0

0 0 0 1 1 0 1 1

0 0 0 1 1 0 0 0

0 0 1 0 1 1 1 1

0 0 1 0 1 1 1 0

0 0 1 0 1 0 1 1

0 0 1 0 1 0 0 0
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27. 

[I e (J C K)] w (L / I)

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 0 0 1

1 0 1 0 0 1 1 1 1

1 0 1 0 0 0 0 0 1

1 0 0 0 1 1 1 1 1

1 0 0 0 1 0 0 0 1

1 0 0 0 0 1 1 1 1

1 0 0 0 0 0 0 0 1

0 1 1 1 1 1 1 0 0

0 1 1 1 1 1 0 1 0

0 1 1 0 0 1 1 0 0

0 1 1 0 0 1 0 1 0

0 1 0 0 1 1 1 0 0

0 1 0 0 1 1 0 1 0

0 1 0 0 0 1 1 0 0

0 1 0 0 0 1 0 1 0
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28. 

[(- M C N) w (O e P)] / M

0 1 0 1 1 1 1 1 1 1

0 1 0 1 0 1 0 0 0 1

0 1 0 1 1 0 1 1 1 1

0 1 0 1 1 0 1 0 1 1

0 1 0 0 1 1 1 1 1 1

0 1 0 0 0 1 0 0 0 1

0 1 0 0 1 0 1 1 1 1

0 1 0 0 1 0 1 0 1 1

1 0 1 1 1 1 1 1 0 0

1 0 1 1 1 1 0 0 0 0

1 0 1 1 1 0 1 1 0 0

1 0 1 1 1 0 1 0 0 0

1 0 0 0 1 1 1 1 1 0

1 0 0 0 0 1 0 0 1 0

1 0 0 0 1 0 1 1 1 0

1 0 0 0 1 0 1 0 1 0
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Exercises 1.6b

1. Tautologous

2. Contradictory

3. Tautologous

4. Tautologous

5. Tautologous

6. Contingent

7. Tautologous

8. Contingent

9. Contingent

10. Contradictory

11. Contingent

12. Tautologous

13. Contradictory

14. Contradictory

15. Contradictory

16. Contradictory

17. Tautologous

18. Contingent

19. Tautologous

20. Tautologous

21. Contradictory

22. Contingent

23. Contingent

24. Contingent

25. Contradictory

26. Contradictory

27. Tautologous

28. Contingent

29. Contingent

30. Contingent

Exercises 1.6c

1. Consistent

2. Consistent

3. Consistent

4. Contradictory

5. Contradictory

6. Inconsistent

7. Logically equivalent

8. Logically equivalent

9. Inconsistent

10. Contradictory

11. Logically equivalent

12. Logically equivalent

13. Consistent

14. Inconsistent

15. Inconsistent

16. Logically equivalent

17. Inconsistent

18. Inconsistent

19. Inconsistent

20. Consistent

21. Consistent

22. Logically equivalent

23. Contradictory

24. Logically equivalent

25. Consistent

26. Inconsistent

27. Consistent

28. Contradictory

29. Logically equivalent

30. Consistent

31. Contradictory

32. Logically equivalent

33. Contradictory

34. Contradictory 

35. Inconsistent
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Exercises 1.7*

1. Invalid; counterexample when A is false

2. Valid

3. Invalid; counterexample when C is true and D is false

4. Invalid; counterexample when E is false and F is true

5. Valid

6. Valid

7. Valid

8. Invalid; counterexample when M is true and N is false

9. Invalid; counterexample when P is true and Q is either true or false 

10. Invalid; counterexample when R is true, S is true, T is false

11. Invalid; counterexample when X is true, Y is false, Z is true

12. Invalid; counterexample when A, B, and C are all false

13. Valid

14. Valid

15. Invalid; counterexample when J is true, K is false, L is true

16. Invalid; counterexample when M is true, N is false, O is either true or false, and P is true

17. Invalid; counterexample when Q is false, R is false, S is either true or fase, and T is true

18. Invalid; counterexample when W and X are false and Y and Z are true

19. Valid

20. Valid

* Alternative counterexamples are available for some of the invalid arguments.
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Exercises 1.8a*

1. Invalid; counterexample when A is false, B is true, C is true, D is true, E is true

2. Invalid; counterexample when F is true, G is false, H is true, I is false, J is true

3. Invalid; counterexample when K is true,  L is false, M is true, N is false, O is false

4. Invalid; counterexample when P is false, Q is true, R is false, S is true, and T is true

5. Invalid; counterexample when U is true, V is false, W is false, Xis true, Y is true, Z is true

6. Valid

7. Valid

8. Invalid; counterexample when L is false and J, K, M and N are all true

9. Valid

10. Invalid; counterexample when U is true, V is false, W is true

11. Valid

12. Invalid; counterexample when A is true, B is true, C is false, D is true, and E is false

13. Valid

14. Invalid; counterexample when K is false, L is false, M is false, N is false, O is false, and P is true

15. Invalid; counterexample when Q is false, and R, S, T and U are all true

16. Invalid; counterexample when W is false, and X, Y, and Z are all true

17. Invalid; counterexample when E is true, and A, B, C, D and F are all false

18. Invalid; counterexample when G is false, H is false, I is false, J is true, and K is true

19. Invalid; counterexample when O is true, and L, M, N, and P are all false

20. Valid

21. Invalid; counterexample when V is false, W is true, X is true, Y is false, and Z is false

22. Valid

23. Invalid; counterexample when G is true, H is false, I is false, J is true, and K is false

24. Invalid; counterexample when L is false, M is true, N is true, P is true, and Q is false

25. Invalid; counterexample when R is false, and S, T, U and V are all true

26. Valid

27. Invalid; counterexample when J is false, K is false, L is true, and M is true

28. Invalid; counterexample when N is either true or false, O, P, and Q are true

29. Valid

30. Invalid; counterexample when V is true, W is true, X is false, Y is false, and Z is true

31. Valid

32. Invalid; counterexample when R is true, S is false, T is true, U is false, and V is true.

* Alternative counterexamples are available for some of the invalid arguments.
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Exercises 1.8b*

1. Consistent; a consistent valuation is when A is true, B is true, C is false, and D is true

2. Consistent; a consistent valuation is when A is false, B is true, C is false, D is true, E is true, F is true

3. Inconsistent

4. Inconsistent

5. Consistent; a consistent valuation is when A is false, B is false, C is true, D is true, E is false, F is true

6. Inconsistent

7. Inconsistent

8. Consistent; a consistent valuation is when A is true, B is true, C is true, D is false, E is true, F is false

9. Inconsistent

10. Consistent; a consistent valuation is when A is true, B is false, D is false, E is true, F is true

11. Consistent; a consistent valuation is when O is true, P is true, Q is false, R is true, S is true, and T is true

12. Consistent; a consistent valuation is when O is true, P is false, R is true, S is true, T is true

13. Consistent; a consistent valuation is when T is true and O, P, Q, R, and S are all false

14. Inconsistent

15. Consistent; a consistent valuation is when P is true, Q is false, R is false, S is true, and T is false

16. Consistent; a consistent valuation is when I is true, J is true, K is false, L is true, M is true, N is false

17. Consistent; a consistent valuation is when I is true, J is true, K is false, L is true, M is false, N is false

18. Inconsistent

19. Consistent; a consistent valuation is when I is true, J is false, K is false, L is true, M is false, N is true

20. Consistent; a consistent valuation is when I is true, J is true, K is false, L is true, M is true,  N is false

* Alternative consistent valuations are available for some of the consistent sets of sentences.
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Chapter 2

Exercises 2.1a

1. 1. V e (W e X)

2. V

3. -X

4. W e X 1, 2 MP

5. -W 3, 4 MT

QED

2. 1. X e Y

2. -Y

3. X w Z

4. -X 1, 2 MT

5. Z 3, 4 DS

QED

3. 1. E e F

2. -F

3. -E e (G C H)

4. -E 1, 2 MT

5. (G C H) 3, 4 MP

QED

4. 1. I e J

2. J e K

3. -K

4. I e K 1, 2 HS

5. -I 3, 4 MT

QED

5. 1. T e S

2. S e R

3. T 

4. T e R 1, 2 HS

5. R 3, 4 MP

QED

6. 1. (I C L) e (K w J)

2. I C L

3. -K

4. K w J 1, 2 MP

5. J 3, 4 DS

QED

7. 1. G e E

2. F e -E

3. H w F

4. -H

5. F 3, 4 DS

6. -E 2, 5 MP

7. -G 1, 6 MT

QED

8. 1. -Q e (N C O)

2. (N C O) e (P e Q)

3. M w -Q

4. -M

5. -Q 3, 4 DS

6. -Q e (P e Q) 1, 2 HS

7. P e Q 6, 5, MP

8. -P 7, 5, MT

QED

9. 1. A e D

2. D e (B e C)

3. B

4. A

5. A e (B e C) 1, 2 HS

6. B e C 4, 5 MP

7. C 3, 6 MP

QED

10. 1. L w N

2. -L

3. N e (M w O)

4. (M w O) e (P / Q)

5. -N 1, 2 DS

6. N e (P / Q) 3, 4 HS

7. P / Q 5, 6 MP

QED

11. 1. U e V

2. -V

3. U w W

4. W e X

5. -U 1, 2 MT

6. W 3, 5 DS

7. X 4, 6 MP

QED

12. 1. X e Z

2. Z e Y

3. -Y

4. -X e A

5. X e Y 1, 2 HS

6. -X 3, 5 MT

7. A 4, 6 MP

QED

13. 1. C e B 2. B e D
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3. (C e D) e E

4. C e D 1, 2, HS

5. E 3, 4, MP

QED

14. 1. E e H

2. G w -F

3. -G

4. H e F

5. E e F 1, 4 HS

6. -F 2, 3 DS

7. -E 5, 6 MT

QED

15. 1. J e L

2. L e (I C M)

3. (I C M) e K

4. -K

5. J e (I C M) 1, 2 HS

6. J e K 3, 5 HS

7. -J 4, 6 MT

QED

16. 1. N w (Q / R)

2. N e P

3. P e M

4. -M

5. -P 3, 4 MT

6. -N 2, 5 MT

7. Q / R 1, 6 DS

QED

17. 1. N w (P C -R)

2. (P C-R) e Q

3. N e O

4. -O

5.  -N 3, 4, MT

6. P C -R 1, 5, DS

7. Q 2, 6, MP

QED

18. 1. R e S

2. S e (T w U)

3. R

4. -T

5. R e (T w U) 1, 2 HS

6. T w U 3, 5 MP

7. U 4, 6 DS

QED

19. 1. Q e (-R e S)

2. T w Q

3. -T

4. R e T

5. Q 2, 3 DS

6. -R e S 1, 5 MP

7. -R 3, 4 MT

8. S 6, 7 MP

QED

20. 1. C e (D / -E)

2. (D / -E) e (B w A)

3. C e -B

4. C

5. C e (B w A) 1, 2 HS

6. B w A 4, 5 MP

7. -B 3, 4 MP

8. A 6, 7 DS

QED

21. 1. -J e K

2. K e (L e M)

3. J e M

4. -M

5. -J 3, 4 MT

6. K 1, 5 MP

7. L e M 2, 6 MP

8. - L 4, 7 MT

QED

22. 1. V e (W w U)

2. X w V

3. X e Y

4. -Y

5. -Y e -W

6. -X 3, 4 MT

7. V 2, 6 DS

8. W w U 1, 7 MP

9. -W 4, 5 MP

10. U 8, 9 DS

QED

23. 1. X e (Y e Z)

2. W w X

3. W e Y

4. -Y

5. -W e Y

6. -W 3, 4 MT

7. X 2, 6 DS

8. Y e Z 1, 7 MP

9. Y 5, 6 MP

10. Z 8, 9 MP

QED



What Follows, Solutions to Exercises, page 337

24. 1. (H C-G) e F

2. F e (G w J)

3. I w (H C -G)

4. I e G

5. -G

6. (H C -G) e (G w J) 1, 2 HS

7. -I 4, 5 MT

8. H C -G 3, 7 DS

9. G w J 6, 8 MP

10. I 9, 5, DS

QED

25. 1. A e B

2. B e (C e D)

3. E w C

4. E e B

5. -B

6. C e A

7. -E 4, 5 MT

8. C 3, 7 DS

9. A 6, 8 MP

10. A e (C e D) 1, 2 HS

11. C e D 9, 10 MP

12. D 8, 11 MP

QED

Exercises 2.1b

1. 1. -A e B

2. A e C

3. -C / B

4. -A 2,3 MT

5. B 1, 4 MP

QED

2. 1. D e E

2. E e F

3. D / F

4. D e F 1, 3 HS

5. F 3, 4 MP

3. 1. G e H

2. I w G

3. -I / H

4. G 2, 3 DS

5. H 1, 4 MP

QED

4. 1. J e K

2. K e L

3. -L / -J

4. J e L 1, 2 HS

5. -J 3, 4 MT

QED

5. 1. Q w R

2. Q e S

3. -S / R

4. -Q 2, 3 MT

5. R 1, 4 DS

QED

6. 1. M  e N

2. N e (O w P)

3. M

4. -O / P

5. M e (O w P) 1, 2, HS

6. O w P 3, 5 MP

7. P 4, 6 DS

QED 

7. 1. T w U

2. T e V

3. U e W

4. -V / W

5. -T 2, 4 MT

6. U 1, 5 DS

7. W 3, 6 MP

QED

8. 1. F e G

2. G e E

3. H w -E

4. - H / -F

5. -E 3, 4 DS

6. F e E 1, 2 HS

7. -F 5, 6 MT

QED

9. 1. -C e D

2. D e A

3. C e B

4. -B / A

5. -C 3, 4 MT

6.  -C e A 1, 2 HS

7. A 5, 6 MP

QED
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10. 1. X e Y

2. Y e Z

3. W w X

4. W e Y

5. -Y / Z

6. -W 4, 5 MT

7. X 3, 6 DS

8. X e Z 1, 2 HS

9. Z 7, 8 MP

QED

Exercises 2.2a

1. MT

2. CD

3. HS

4. invalid

5. invalid

6. Add

7. invalid

8. MP

9. Conj

10. invalid

11. DS

12. Simp

Exercises 2.2b

1. 1. A e (C C D)

2. A C B

3. A 2, simp

4. C C D 1, 3 MP

5. C 4, simp

QED

2. 1. (M e N) C (O e P)

2. M C Q

3. M 2, simp

4. M w O 3, add

5. N w P 1, 3 CD

QED

3. 1. I w J

2. -I C K

3. -I 2, simp

4. J 1, 3, DS

5. J w L 4, add

QED

4. 1. (F w G) e H

2. F C E

3. F 2, simp

4. F w G 3, add

5. H 1, 4 MP

QED

5. 1. F e E

2. -E C G

3. H 

4. -E 2, simp

5. -F 1, 4 MT

6. -F C H 3, 5 conj

QED

6. 1. (-A e B) C (C e D)

2. A e D

3. -D

4. -A 2,3 MT

5. -A w C 4, add

6. B w D 1, 5 CD

QED
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7. 1. W e X

2. -X C Y

3. -X 2, simp

4. -W 1, 3 MT

5. -W w Z 4, add

6. (-W w Z) C -X 3, 5 conj

QED

8. 1. T w S

2. -T

3. U

4. S 1, 2, DS

5. U C S 3, 4, Conj

QED

9. 1. (V C W) e X

2. V C Y

3. W C Z

4. V 2, simp

5. W 3, simp

6. V C W 4, 5 conj

7. X 1, 6 MP

QED

10. 1. (E w I) e H

2. H e (F C G)

3. E

4. (E w I) e (F C G) 1, 2 HS

5. E w I 3, add

6. F C G 4, 5 MP

7. (F C G) C E 3, 6 conj

QED

11. 1. (J e L) C (K e M)

2. J C M

3. -L

4. J 2, simp

5. J w K 4, add

6. L w M 1, 5, CD

7. M 6, 3, DS

QED

12. 1. N w --P

2. -N C Q

3. -P w Q

4. -N 2, simp

5. --P 1, 4 DS

6. Q 3, 5 DS

7. --P C Q 5, 6 conj

QED

13. 1. M e N

2. N e O

3. M C P

4. M 3, simp

5. M e O 1, 2 HS

6. O 4, 5 MP

7. O w P 6, add

QED

14. 1. W e Z

2. Z e (X w Y)

3. W C Y

4. (X e U) C (Y e V)

5. W 3, simp

6. W e (X w Y) 1, 2 HS

7. X w Y 5, 6 MP

8. U w V 4, 7 CD

QED

15. 1. B e A

2. -A C D

3. -B e C

4. -A 2, simp

5. -B 1, 4 MT

6. C 3, 5, MP

7. C w A 6, Add

QED

16. 1. D w E

2. D e F

3. -F C G

4. -F 3, simp

5. -D 2, 4 MT

6. E 1, 5 DS

7. E w H 6, add

8. (E w H) C -F 4, 8 conj

QED

17. 1. R e S

2. S e (T e U)

3. R

4. U e R

5. R e (T e U) 1, 2 HS

6. T e U 5, 3, MP

7. T e R 6, 4, HS

QED
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18. 1. (C e D) C (B e D)

2. A C C

3. A e C

4. A 2, simp

   5. C 3, 4, MP

6. C w B 5, Add

7. D w D` 1, 6, CD

QED

19. 1. M e J

2. (-M C -J) e K

3. -J

4. -M 1, 3 MT

5. -M C -J 4, 3 conj

6. K 2, 5, MP

7. K w N 7, add

QED

20. 1. O e Q

2. Q e P

3. P e (R C S)

4. O

5. O e P 1, 2 HS

6. P 5, 4, MP

7. R C S 3, 6, MP

QED

21. 1. (R w T) e S

2. S e U

3. R

4. (R w T) e U 1, 2 HS

5. R w T 3, Add

6. U 4, 5, MP

7. U w T 6, Add

QED

22. 1. I e J

2. -J C K

3. -J e L

4. --I

5. -J 2, simp

6. L 3, MP

7. -I 1, 5 MT

8. -I w K 7, add

9. K 4, 8 DS

10. K C L 6, 9 conj

QED

23. 1. Q e R

2. R e (S w T)

3. Q

4. -S C U

5. Q e (S w T) 1, 2 HS

6. S w T 3, 5 MP

7. -S 4, simp

8. T 6, 7 DS

9. T C Q 3, 8 conj

10. (T C Q) w R 9, add

QED

24. 1. (-V e W) C (X e Y)

2. V e Z

3. -W C X

4. -Z C Y

5. -Z 4, simp

6. -V 2,5 MT

7. -V w  X 6, add

8. W w Y 1, 7 CD

9. -W 3, simp

10. Y 8, 9 DS

11. Y C -V 6, 10 conj

QED

25. 1. A e B

2. B e (C e D)

3. A C D

4. -D

5. D C E

6. A 3, simp

7. A e (C e D) 1, 2 HS

8. C e D 6, 7 MP

9. -C 4, 8 MT

10. D 5, simp

11. D w E 10, add

12. E 4, 11 DS

QED
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Exercises 2.2c

1. 1. A e B

2. -B C C / -A C -B

3. -B 2, simp

4. -A 1, 3 MT

5. -A C -B 3, 4 conj

QED

2. 1. (D e E) C (F e G)

2. H e D

3. H C G / E w G

4. H 3, simp

5. D 2, 4 MP

6. D w F 5, add

7. E w G 1, 6 CD

QED

3. 1. I e J

2. J e K

3. I C L / K w J

4. I e K 1, 2 HS

5. I 3, simp

6. K 4, 5 MP

7. K w J 6, add

QED

4. 1. Q e -R

2. -R e S

3. Q C -R / Q C S

4. Q e S 1, 2 HS

5. Q 3, simp

6. S 4, 5 MP

7. Q C S 5, 6 conj

QED

5. 1. T e U

2. V w -U

3. -V / -T w W

4. -U 2, 3 DS

5. -T 1, 4 MT

6. -T w W 5, add

QED

6. 1. E w F

2. E e G

3. -G C H / F w H

4. -G 3, simp

5. -E 2, 4 MT

6. F 1, 5 DS

7. F w H 6, add

QED

7. 1. M e N

2. O e P

3. M w O

4. -N / P w M

5. -M 1, 4 MT

6. O 3, 5 DS

7. P 2, 6 MP

8. P w M 7, add

QED

8. 1. A e B

2. C e D

3. -B

4. C / -A C D

5. D 2, 4, MP

6. -A 1, 3, MT

7. -A C D 6, 5, Conj

QED

9. 1. K w (L C M)

2. -K C J

3. L e J / J w M

4. -K 2, simp

5. L C M 1, 4 DS

6. L 5, simp

7. J 3, 6 MP

8. J w M 7, add

QED

10. 1. X e Y

2. Y e Z

3. W w X

4. -W C Y / Z C -W

5. -W 4, simp

6. X 3, 5 DS

7. X e Z 1, 2 HS

8. Z 6, 7 MP

9. Z C -W 5, 8 conj

QED
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Exercises 2.3a

1. 1. A e B

2. C C A

3. A C C 2, com

4. A 3, simp

5. B 1, 4 MP

QED

2. 1. (A C B) w (A C C)

2. D e -A

3. A C (B w C) 1, dist

4. A 3, simp

5. --A 4, DN

6. -D 2, 5 MT

QED

3. 1. E e F

2. --E C G

3. --E 2, simp

4. E 3, DN

5. F 1, 4 MP

QED

4. 1. H w J

2. I C -H

3. -H C I 2, com

4. -H 3, simp

5. J 1, 4 DS

QED

5. 1. X e Y

2. Z C -Y

3. -Y C Z 2, com

4. -Y 3, simp

5. -X 1, 4 MT

QED

6. 1. F e (C w D)

2. -[C w (D w E)]

3. -[(C w D) w E]2, assoc

4. -(C w D) C -E 3, DM

5. -(C w D) 4, simp

6. -F 1, 5 MT

QED

7. 1. X e Y

2. (-Y C Z) C T

3. X w W

4. -Y C (Z C T) 2, assoc

5. -Y 4, simp

6. -X 1, 5 MT

7. W 3, 6 DS

QED

8. 1. -A w B

2. -[(-A w C) w D]

3. -(-A w C) C -D 2, DM

4. -(-A w C) 3, simp

5. --A C -C 4, DM

6. --A 5, simp

7. B 1, 6 DS

QED

9. 1. R C (S w T)

2. -R w -S

3. -(R C S) 2, DM

4. (R C S) w (R C T) 1, dist

5. R C T 3, 4 DS

6. T C R 5, com

7. T 6, simp

QED

10. 1. I C {-[J C (K w L)] C M}

2. (-J w -L) e N

3. {I C -[J C (K w L)]} C M 1, assoc

4. I C -[JCw (K w L)] 3, simp

5. -[J C (K w L)] C I 4, com

6. -[J C (K w L)] 5, simp

7. -[(J C K) w (J C L)] 6, dist

8. -(J C K) C -(J C L) 7, DM

9. (-J w -K) C (-J w -L) 8, DM

10. (-J w -L) C (-J w -K) 9, com

11. -J w L 10, simp

12. N 2, 11 MP

QED

11. 1. J e K

2. K e [L w (M C N)]

3. -N C J

4. J e [L w (M C N)] 1, 2 HS

5. J C -N 3, com

6. J 5, simp

7. L w (M C N) 4, 6 MP

8. (L w M) C (L w N) 7, dist

9. ( L w N) C (L w M) 8, com

10. L w N 9, simp

11. -N 3, simp

12. N w L 10, com

13. L 11, 12 DS

QED

12. 1. -[(G C H) C I] 2. G C I
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3. -[G C (H C I)} 1, assoc

4. -G w -(H C I) 3, dist

5. G 2, simp

6. --G 5, DN

7. -(H C I) 4, 6 DS

8. -H w -I 7, DM

9. I C G 2, com

10. I 9, simp

11. --I 10, DN

12. -I w -H 8, com

13. -H 11, 12

DS

QED

13. 1. Q e R

2. -(S w T)

3. T w Q

4. -S C -T 2, DM

5. -T C -S 4, com

6. -T 5, simp

7. Q 3, 6 DS

8. R 1, 7 MP

QED

14. 1. A w (B C C)

2. (C w A) e --B

3. (A w B) C (A w C) 1, Dist

4. (A w C) C (A w B) 3, Com

5. A w C 4, Simp

6. C w A 5, Com

7. --B 2, 6, MT

8. B 7, DN

QED

15. 1. (K C L) C M

2. K e N

3. N e -(O w P)

4. K C (L C M) 1, assoc

5. K 4, simp

6. K e -(O w P) 2, 3 HS

7. -(O w P) 5, 6 MP

8. -O C -P 7, DM

9. -P C -O 8, com

10. -P 9, simp

QED

16. 1. [O w (P C Q)] e R

2. R e -S

3. P C S

4. S C P 3, com

5. S 4, Simp

6. --S 5, DN

7. -R 2, 6, MT

8. -[O w (P C Q)] 1, 7, MT

9. -O C -(P C Q) 8, DM

10. -(P C Q) C -O9, Com

11. -(P C Q) 10, Simp

12. -P w -Q 11, DM

13. P 3, Simp

14. --P 13, DN

15. -Q 12, 14, DS

QED

17. 1. E e F

2. F e -(G w H)

3. I C E

4. E e -(G w H) 1, 2 HS

5. E C I 3, com

6. E 5, simp

7. -(G w H) 4, 6 MP

8. -G C -H 7, DM

9. -H C -G 8, com

10. -H 9, simp

QED

18. 1. T w (U C V)

2. T e (W C X)

3. -W

4. (T w U) C (T w V) 1, dist

5. (T w V) C (T w U) 4, com

6. T w V 5, simp

7. -W w -X 3, add

8. -(W C X) 7, DM

9. -T 2, 8 MT

10. V 6, 9 DS

QED

19. 1. A e B

2. -[(C C D) w (C C B)]

3. C C E

4. -(C C D) C -(C C B) 2, DM

5. -(C C B) C -(C C D) 4, com

6. -(C C B) 5, simp

7. -C w -B 6, DM

8. C 3, simp

9. --C 8, DN

10. -B 7, 9 DS

11. -A 1, 10 MT

QED

20. 1. [T C (U w V)] e W

2. W e -X

3. Y C X
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4.  [T C (U w V)] e -X 1, 2 HS

5. X C Y 3, com

6. X 5, simp

7. --X 6, DN

8. -[T C (U w V)] 4, 7 MT

9. -T w -(U w V) 8, DM

10. -T w (-U C -V) 9, DM

11. (-T w -U) C (-T w -V) 10, dist

12. -(T C U) C -(T C V) 11, DM

QED

21. 1. F e G

2. H e I

3. (J w F) w H

4. -J C -G

5. (F e G) C (H e I) 1, 2 conj

6. J w (F w G) 3, assoc

7. -J 4, simp

8. F w G 6, 7 DS

9. G w I 5, 8 CD

10. -G C -J 4, com

11. -G 10, simp

12. I 9, 11 DS

QED

22. 1. O e P

2. (O C -Q) C -R

3. P e [Q w (R w S]

4. O e [Q w (R w S] 1, 3 HS

5. O C (-Q C -R) 2, assoc

6. O 5, simp

7. Q w (R w S) 4, 6 MP

8. (-Q C -R) C O 5, com

9. -Q C -R 8, simp

10. -(Q w R) 9, DM

11. (Q w R) w S 7, assoc

12. S 10, 11 DS

QED

23. 1. U e V

2. V e -(W C X)

3. U C (W C Y)

4. U e -(W C X) 1, 2 HS

5. (U C W) C Y 3, assoc

6. U C W 5, simp

7. U 6, simp

8. -(W C X) 4, 7 MP

9. -W w -X 8, DM

10. W C U 6, com

11. W 10, simp

12. --W 11, DN

13. -X 9, 12 DS

14. Y C (U C W) 5, Com

15. Y 14, Simp

16. -X C Y 13, 15, Conj

QED

24. 1. K e -L

2. K w (M C N)

3. M e -N

4. (K w M) C (K w N) 2, dist

5. (K e -L) C (M e -N) 1, 3 conj

6. K w M 4, simp

7. -L w -N 5, 6 CD

8. -(L C N) 7, DM

QED

25. 1. (O C P) e (Q C R)

2. (P e -Q) C (O e -R)

3. P

4. P w O 3, add

5. -Q w -R 2, 4 CD

6. -(Q C R) 5, DM

7. -(O C P) 1, 6 MP

8. -O w -P 7, DM

9. -P w -O 8, com

QED
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Exercises 2.3b

1. 1. A e B

2. (-B C C) C D / -A

3. -B C (C C D) 2, assoc

4. -B 3, simp

5. -A 1, 4 MT

QED

2. 1. C e D

2. (C C E) w (C C F) / D

3. C C (E w F) 2, dist

4. C 3, simp

5. D 1, 4 MP

QED

3. 1. M e N

2. L w -N

3. -(L w O) / -M

4. -L C -O 3, DM

5. -L 4, simp

6. -N 2, 5 DS

7. -M 1, 6 MT

QED

4. 1. -[P w (Q C R)]

2. (-Q e S) C (-R e T) / S w T

3. -P C -(Q C R) 1, DM

4. -P C (-Q w -R) 3, DM

5. (-Q w -R) C -P 4, com

6. -Q w -R 5, simp

7. S w T 2, 6 CD

QED

5. 1. U w (V w W)

2. -U C -V

3. T e -W / -T

4. (U w V) w W 1, assoc

5. -(U w V) 2, DM

6. W 4, 5 DS

7. --W 6, DN

8. -T 3, 7 MT

QED

6. 1. X w (Y C Z)

2. X e Z

3. -(W w Z) / Y C Z

4. -W w -Z 3, DM

5. -Z C -W 4, com

6. -Z 5, simp

7. -X 2, 6 MT

8. Y C Z 1, 7 DS

QED

7. 1. A e B

2. B e [(C C D) w E]

3. (A C -C) w (A C -D) / E

4. A e [(C C D) w E] 1, 2 HS

5. A C (-C w -D) 3, dist

6. A C -(C C D) 5, DM

7. -(C C D) C A 6, com

8. -(C C D) 7, simp

9. A 5, Simp

10. (C C D) w E 4, 9, MP

11. E 10, 8, DS

QED

8. 1. -G e H

2. H e I

3. -(G w J) / I C -J

4. -G e I 1, 2 HS

5. -G C -J 3, DM

6. -G 5, simp

7. I 4, 6 MP

8. -J C -G 5, com

9. -J 8, simp

10. I C -J 7, 9 conj

QED

9. 1. -[(E C F) w (G w H)]

2. I w J

3. I e H / J

4. -(E C F) C -(G w H) 1, DM

5. (-E w -F) C (-G C -H) 4, DM

6. (-G C -H) C (-E w -F) 5, com

7. -G C -H 6, simp

8. -H C -G 7, com

9. -H 8, simp

10. -I 3, 9 MT

11. J 2, 10 DS

QED

10. 1. -(K C L) e M

2. M e N

3. -[(O C P) w N] / L

4. -(O C P) C -N 3, DM

5. -N C -(O C P) 4, com

6. -N 5, simp

7. -(K C L) e N 1, 2 HS

8. --(K C L) 6, 7 MT

9. K C L 8, DN

10. L C K 9, com

11. L 10, simp

QED

Exercises 2.4a

1. 1. A e B

2. B e -B

3. -B w -B 2, impl
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4. -B 3, taut

5. -A 1, 4 MT

QED

2. 1. -K w L

2. L e -K

3. K e L 1, impl

4. K e -K 3, 2, HS

5. -K w -K 4, Impl

6. -K 5, Taut

 QED

3. 1. (A e B) e C

2. -A w (B C D)

3. (-A w B) C (-A w D) 2, dist

4. -A w B 3, simp

5. A e B 4, impl

6. C 1, 5 MP

QED

4. 1. G e H

2. -(I e H)

3. -(-I w H) 2, impl

4. --I C -H 3, DM

5. -H C --I 4, com

6. -H 5, simp

7. -G 1, 6 MT

QED

5. 1. -I w J

2. J / K

3. (I C L) w (I C M)

4. I e J 1, impl

5. (J e K) C (K e J) 2, Equiv

6. J e K 5, Simp

7. I e K 4, 6, HS

8. I C (L w M) 3, Dist

9. I 8, Simp

10. K 7, 9, MP

QED

6. 1. (T C U) e V

2. -(T e W)

3. -(-T w W) 2, Impl

4. --T C -W` 3, DM

5. --T 4, Simp

6. T 5, DN

7. T e (U e V) 1, Exp

8. U e V 7, 6, MP

QED

7. 1. W e (X C Y)

2. (W C -X) w Z

3. -W w (X C Y) 1, impl

4. (-W w X) C (-W w Y) 3, dist

5. -W w X 4, simp

6. (--W C -X) w Z 2, DN

7. -(-W w X) w Z 6, DM

8. --(-W w X) 5, DN

9. Z 7, 8 DS

QED

8. 1. N e (O C P)

2. -N e Q

3. -N w (O C P) 1, Impl

4. (-N w O) C (-N w P) 3, Dist

5. -N w O 4, Simp

6. N e O 5, Impl

7. -O e -N 6, Cont

8. -O e Q 7, 2, HS

QED

9. 1. E / F

2. -(G w E)

3. (E e F) C (F e E) 1, equiv

4. -G C -E 2, DM

5. (F e E) C (E e F) 3, com

6. F e E 5, simp

7. -E C -G 4, com

8. -E 7, simp

9. -F 6, 8 MT

QED

10. 1. G w H

2. -I C (J C -G)

3. (-I C J) C -G 2, assoc

4. -G C (-I C J) 3, com

5. -G 4, simp

6. H 1, 5 MP

7. H w -I 6, add

QED

11. 1. A w (B w A)

2. -(B w C)

3. A e D

4. (B w A) w A 1, com

5. B w (A w A) 4, assoc

6. B w A 5, taut

7. -B C -C 2, DM

8. -B 7, simp

9. A 6, 8 DS

10. D 3, 9 MP

QED
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12. 1. (H C I) e J

2. H C (I w K)

3. (H C I) w (H C K) 2, dist

4. -J e -(H C I) 1, Cont

5. --(H C I) w (H C K) 3, DN

6. -(H C I) e (H C K) 5, Impl

7. -J e (H C K) 4, 6, HS

8. --J w (H C K) 7, Impl

9. (--J w H) C (--J w K) 8, Dist

10. (--J w K) C (--J w H) 9, Com

11. --J w K 10, Simp

12. -J e K 11, Impl

QED

13. 1. L e -(-M w K)

2. M e (-K e N)

3. -N

4. (M C -K) e N 2, Exp

5. -(M C -K) 4, 3, MT

6. -M w--K 5, DM

7. -M w K 6, DN

8. --(-M w K) 7, DN

9. -L 1, 8, MT

QED

14. 1. Q e R

2. R e (S e T)

3. Q e (S e T) 1, 2 HS

4. (Q C S) e T 3, exp

5. -(Q C S) w T 4, impl

6. (-Q w -S) w T 5, DM

7. (- S w -Q) w T 6, com

8. T w (-S w -Q) 7, com

9. --T w (-S w -Q) 8, DN

10. -T e (-S w-Q) 9, impl

11. -T e (S e -Q) 10, impl

QED

15. 1. D / E

2. (E w F) e G

3. -(G w H)

4. -G C -H 3, DM

5. -G 4, simp

6. -(E w F) 2, 5 MT

7. -E C -F 6, DM

8. (D e E) C (E e D) 1, equiv

9. D e E 8, simp

10. -E 7, simp

11. -D 9, 10 MT

QED

16. 1. D w (E w F)

2. F e (G C H)

3. -G

4. (D w E) w F 1, assoc

5. --(D w E) w F 4, DN

6. -(D w E) e F 5, impl

7. - G w -H 3, add

8. -(G C H) 7, DM

9. -F 2, 8 MT

10. --(D w E) 6, 9 MT

11. D w E 10, DN

QED

17. 1. (X e Y) e Z

2. W e -Z

3. -Z e -(X e Y) 1, cont

4. W e -(X e Y) 2, 3 HS

5. -W w -(X e Y) 4, impl

6. -W w-(-X w Y) 5, impl

7. -W w (--X C -Y) 6, DM

8. -W w (X C -Y) 7, DN

9. (-W w X) C (-W w -Y) 8, dist

10. (-W w -Y) C (-W w X) 9, com

11. -W w -Y 10, simp

12. -(W C Y) 11, DM

QED

18. 1. R e T

2. T e S

3. (U C S) e R

4. -(-U w T)

5. --U C -T 4, DM

6. U C -T 5, DN

7. U 6, simp

8. R e S 1, 2 HS

9.  U e (S e R) 3, exp

10. S e R 7, 9 MP

11. (R e S) C (S e R) 8, 10 conj

12. R / S 11, equiv

QED

19. 1. (S / T) C -U

2. -S w (-T w U)

3. S / T 1, simp

4. (S C T) w (-S C -T) 3, equiv

5. (-S w -T) w U 2, assoc

6. -(S C T) w U 5, DM

7. U w -(S C T) 6, com

8. -U C (S / T) 1, com

9. - U 8, simp

10. -(S C T) 7, 9 HS

11. -S C -T 4, 10 HS

12. -S 11, simp

QED
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20. 1. [V w (W w X)] e Y

2. Y e Z

3. [V w (W w X)] e Z 1, 2 HS

4. [(V w W) w X] e Z 3, assoc

5. -[(V w W) w X] w Z 4, impl

6. [-(V w W) C -X] w Z 5, DM

7. [(-V C -W) C -X] w Z 6, DM

8. Z w [(-V C -W) C -X] 7, com

9. [Z w(-V C -W)] C (Z w -X) 8, dist

10. [(Z w -V) C (Z w -W)] C (Z w -X)

9, dist

11. (Z w -V) C (Z w -W) 10, simp

12. Z w -V 11, simp

QED

21. 1. A e (B e C)

2. -C w (D C E)

3. -(D w F)

4. (-C w D) C (-C w E) 2, dist

5. -C w D 4, simp

6. -D C -F 3, DM

7. -D 6, simp

8. D w -C 5, com

9. -C 7, 8 DS

10. (A C B) e C 1, exp

11. -(A C B) 9, 10 MT

12. -A w -B 11, DM

QED

22. 1. F e (G e H)

2. G C -H

3. J e F

4. (F C G) e H 1, exp

5. -(F C G) w H 4, impl

6. (-F w -G) w H 5, DM

7. -F w (-G w H) 6, assoc

8. (-G w H) w -F 7, com

9. --G C -H 2, DN

10. -(-G w H) 9, DM

11. -F 8, 10 DS

12. -J 3, 11 MT

QED

23. 1. N e O

2. P e Q

3. -(Q w O)

4. -Q C -O 3, DM

5. -Q 4, simp

6. -P 2,5 MT

7. -O C -Q 4, com

8. -O 7, simp

9. -N 1, 8 MT

10. - P C -N 6, 9 conj

11. (-P C -N) w (P C N) 10, add

12. (P C N) w (- P C -N) 11, com

13. P / N 12, equiv

QED

24. 1. O / P

2. P / Q

3. (O e P) C (P e O) 1, equiv

4. (P e Q) C (Q e P) 2, equiv

5. O e P 3, simp

6. P e Q 4, simp

7. O e Q 5, 6 HS

8. (P e O) C (O e P) 3, com

9. P e O 8, simp

10. (Q e P) C (P e Q) 4, com

11. Q e P 10, simp

12. Q e O 9, 11 HS

13. (O e Q) C (Q e O) 7, 12 conj

14. O / Q 13, equiv

QED

25. 1. T e (U e V)

2. Q e (R e V)

3. (T C U) w (Q C R)

4. (T C U) e V 1. Exp

5. (Q C R) e V 2, Exp

6. [(T C U) e V] C [(Q C R) e V]

4, 5, Conj

7. V w V 6, 3, CD

8. V 7, Taut

QED

26. 1. -(X e Y)

2. Y w (Z C A)

3. -(-X w Y) 1, Impl

4. --X C -Y 3, DM

5. -Y C --X 4, Com

6. -Y 5, Simp

7. Z C A 2, 6, DS

8. (Z C A) w (-Z C -A) 7, Add

9. Z / A 8, Equiv.

QED
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Exercises 2.4b

1. 1.  R / S

2. -S / -R

3. (R e S) C (S e R) 1, equiv

4. R e S 3, simp

5. -R 2, 4 MT

QED

2. 1. A e B

2. B e C / C w -A

3. A e C 1, 2 HS

4. -C e -A 3, cont

5. --C w A 4, impl

6. C w -A 5, DN

QED

3. 1. Q e (R e S) / -[Q C (R C -S)]

2. (Q C R) e S 1, exp

3. -(Q C R) w S 2, impl

4. (-Q w -R) w S 3, DM

5. -Q w (-R w S) 4, assoc

6. -Q w (-R w --S) 5, DN

7. -Q w -(R C -S) 6, DM

8. -[Q C (R C -S)] 7, DM

QED

4. 1. L e M

2. N e (O e L)

3. O C N / M

4. (N C O) e L 2, Exp

5. N C O 3, Com

6. L 4, 5, MP

7. M 1, 6, MP

QED

5. 1. C / D

2. (D C E) C F / C

3. (C e D) C (D e C) 1, equiv

4. (D e C) C (C e D) 3, com

5. D e C 4, simp

6. D C (E C F) 2, assoc

7. D 6, simp

8. C 5, 7 MP

QED

6. 1. O e P

2. P e -O

3. (O w Q) w R / Q w R

4. O e -O 1, 2 HS

5. -O w -O 4, impl

6. -O 5, taut

7. O w (Q w R) 3, assoc

8. Q w R 6, 7 DS

QED

7. 1. -(V e W)

2. W w U / U

3. -(-V w W) 1, impl

4. --V C -W 3, DM

5. V C -W 4, DN

6. -W C V 5, com

7. -W 6, simp

8. U 2, 7 DS

QED

8. 1. J / K / -K / -J

2. (J e K) C (K e J) 1, equiv

3. J e K 2, simp

4. -K e -J 3, cont

5. (K e J) C (J e K) 2, com

6. K e J 5, simp

7. -J e -K 6, cont

8. (-K e -J) C (-J e -K) 4, 7 conj

9. -K / -J 8, equiv

QED

9. 1. -L w M

2. (L C N) C O

3. -M w P / P

4. L e M 1, impl

5. L C (N C O) 2, assoc

6. L 5, simp

7. M 4, 6 MP

8. --M 7, DN

9. P 3, 8 DS

QED

10. 1. (X e Y) e Z

2. Z e W / W w X

3. (X e Y) e W 1, 2 HS

4. -(X e Y) w W 3, impl

5. -(-X w Y) w W 4, impl

6. (--X C -Y) w W 5, DM

7. (X C -Y) w W 6, DN

8. W w (X C -Y) 7, com

9. (W w X) C (W w -Y) 8, dist

10. W w X 9, simp

QED
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Exercises 2.5a

1. 1. (A w C) e D

2. D e B

*3. A ACP

*4. (A w C) e B 1, 2 HS

*5. A w C 3, add

*6. B 4, 5 MP

7. A e B 3-6 CP

QED

2. 1. X e Y

2. Y e Z

*3. X ACP

*4. Y 1, 3 MP

*5. Z 2, 4 MP

*6. Y C Z 4, 5, Conj

7. X e (Y C Z) 3-6 CP

QED

3. 1. Q e (-R C S)

*2. Q ACP

*3. -R C S 1, 2 MP

*4. -R 3, simp

5. Q e -R 2-4 CP

6. --R e -Q 5, cont

7. R e -Q 6, DN

QED

4. 1. -(P C Q) e [(-P C -Q) C (-R C -S)]

*2. -(P C Q) ACP

*3. (-P C -Q) C (-R C -S) 1, 2 MP

*4. -P C -Q 3, simp

5. -(P C Q) e (-P C -Q) 2-4 CP

6. --(P C Q) w (-P C -Q) 5, impl

7. (P C Q) w (-P C -Q) 6, DN

8. P / Q 7, equiv

QED

5. 1. A e [(D w B) e C]

*2. A ACP

* *3. D ACP

* *4. (D w B) e C 1, 2 MP

* *5. D w B 3, add

* *6. C 4, 5 MP

*7. D e C 3-6 CP

8. A e (D e C) 2-7 CP

QED

6. 1. Z e -Y

*2. X C Y ACP

* *3. Z ACP

* *4. -Y 2, 4 MP

* *5. Y C X 2, Com

* *6. Y 5, Simp

* *7. Y w W 6, Add

* *8. W 7, 4 DS

*9. Z e W 3-8 CP

10. (X C Y) e (Z e W) 2-9 CP

QED

7. 1. -M e N

2. L e -N

*3. L ACP

*4. -N 2, 3 MP

*5. --M 1, 4 MT

*6. M 5, DN

7. L e M 3-6 CP

8. -L w M 7, impl

QED

8. 1. R e -O

2. -R e [S C (P w Q)]

*3. O ACP

*4. --O 3, DN

*5. -R 1, 4 MT

*6. S C (P w Q) 2, 5 MP

*7. (P w Q) C S 6, com

*8. P w Q 7, simp

9. O e (P w Q) 3-8 CP

QED

9. 1. -G w (E C -F)

*2. E e F ACP

*3. -E w F 2, Impl

*4. --(-E w F) 3, DN

*5. -(--E C -F) 4, DM

*6. -(E C -F) 5, DN

*7. (E C -F) w -G 6, Com

*8. -G 7, 6 DS

 9. (E e F) e -G 2-8 CP

QED
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10. 1. I e H

2. -I e J

3. J e -H

*4. -H ACP

*5. -I 1,4 MP

*7. J 2, 5 MP

8. -H e J 4-7 CP

9. (J e -H) C (-H e J) 3, 8 conj

10. J / -H 9, equiv

QED

11. 1. -(U w V)

2. W e X

*3. U w W ACP

*4. -U C -V 1, DM

*5. -U 4, simp

*6. W 3, 5 DS

*7. X 2, 6 MP

*8. X w -V 7, add

*9. -V w X 8, com

*10. V e X 9, impl

11. (U w W) e (V e X) 3-10 CP

QED

12. 1. -M w N

2. P

*3. M w -P ACP

*4. -P w M 3, com

*5. P e M 4, impl

*6. M e N 1, impl

*7. P e N 5, 6 HS

*8. N 2, 7 MP

*9. N w O 8, add

*10. O w N 9, com

11. (M w -P) e (O w N) 3-10 CP

QED

13. 1. -(I w -K)

2. L e J

*3. I w L ACP

*4. -I C --K 1, DM

*5. -I C K 4, DN

*6. -I 5, simp

*7. L 3, 6 DS

*8. J 2, MP

*9. K C -I 5, com

*10. K 9, simp

*11. K C J 8, 10 conj

12. (I w L) e (K C J) 3-11 CP

QED
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14. 1. X e [(T w W) e S]

2. (W e S) e (Y e R)

3. -Z e -R

    *4. X ACP

*5. (T w W) e S 1, 4, MP

* *6. W ACP

* *7. W w T 6, Add

* *8. T w W 7, Com

* *9. S 5, 8, MP

*10. W e S 6-9, CP

*11. Y e R 2, 10, CP

*12. R e Z 3, Cont

*13. Y e Z 11, 12, HS

14 X e (Y e Z) 4-13, CP

QED

15. 1. E e (F e G)

2. -(H w -E)

3. G e H

*4. F ACP

*5. (E C F) eG 1, exp

*6. -H C --E 2, DM

*7. --E C -H 6, com

*8. E C -H 7, DN

*9. E 8, simp

*10. E C F 4, 10 conj

*11. G 5, 10 MP

*12. H 3, 11 MP

13. F e H 4-12 CP

QED

16. 1. -M e -(-P w Q)

2. -(O w N)

*3. M e O ACP

*4. -O C -N 2, DM

*5. -O 4, simp

*6. -M 3, 5 MT

*7. -(-P w Q) 1, 6 MP

*8. --P C -Q 7, DM

*9. P C -Q 8, DN

*10. P 9, simp

*11. -N C -O 4, com

*12. -N 11, simp

*13. P C -N 10, 12 conj

14. (M e O) e (P C -N) 3-13 CP

QED
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17. 1. (T e -Q) C -W

2. -Q e [(W w S) C  (W w T)]

3. -T w (S e X)

4. -W C (T e -Q) 1, Com

5. -W 4, Simp

*6. -Q ACP

*7. (W w S) C  (W w T) 2, 4, MP

*8. W w (S C T) 5, Dist

*9. S C T 8, 5, DS

*10. T C S 9, Com

*11. T 10, Simp

*12.  --T 11, DN

*13. S e X 3, 12, DS

*14. S 9, Simp

*15. X 13, 14, MP

16. -Q e X 6-15, CP

17. T e -Q 1, Simp

18. T e X 17, 16, HS

QED

18. 1. [P e (Q e P)] e S

2. [(P e Q) e (-Q e -P)] e (S e T)

*3. P ACP

*4. P w -Q 3, Add

*5. -Q w P 4, Com

*6. Q e P 5, Impl

7. P e (Q e P) 3-6, CP

8. S 1, 7, MP

*9. P e Q ACP

*10. -Q e -P 9, Cont

11. (P e Q) e (-Q e -P) 9-10, CP

12. S e T 2, 11, MP

13. T 12, 8, MP

QED

19. 1. E e -(F e G)

2. F e (E C H)

*3. E ACP

*4. -(F e G) 1, 3 MP

*5. -(-F w G) 4, impl

*6. --F C -G 5, DM

*7. F C G 6, DN

*8. F 7, simp

9. E e F 3-8 CP

*10. F ACP

*11. E C H 2, 10 MP

*12. E 11, simp

13. F e E 10-12 CP

14. (E e F) C (F e E) 9, 13 conj

15. E / F 14, equiv

QED
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20. 1. M e (-K w N)

2. N e L

3. M w (K C -L)

*4. M ACP

*5. -K w N 1, 4 MP

* *6. K ACP

* *7. --K 6, DN

* *8. N 5, 7 DS

* *9. L 2, 8 MP

*10. K e L 6-9 CP

11. M e (K e L) 4-10 CP

*12. K e L ACP

*13. -K w L 12, impl

*14. M w (--K C -L) 3, DN

*15. M w -(-K w L) 14, DM

*16. -(-K w L) w M 15, com

*17. --(-K w L) 13, DN

*18. M 16, 17 DS

19. (K e L) e M 12-18 CP

20. [M e (K e L)] C [(K e L) e M] 11, 19 conj

21. M / (K e L) 20, equiv

QED

Exercises 2.5b

1. 1. -R e T / -R e (T w S)

*2. -R ACP

*3. T 1, 2 MP

*4. T w S 3, add

5. -R e (T w S) 2-4 CP

QED

2. 1. -(P w R) / O e (P e Q)

*2. O ACP

*3. -P C -R 1, DM

*4. -P 3, simp

*5. -P w Q 4, add

*6. P e Q 5, impl

7. O e (P e Q) 2-5 CP

QED

3. 1. W e (Y e X)

2. -Y e -W / W e X

*3. W ACP

*4. Y e X 1, 3, MP

*5. W e Y 2, Cont

*6. W e X 5, 4, HS

*7. X 6, 3, MP

8. W e X 3-7 CP

QED
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4. 1. (A C B) e C

2. (C w D) e E / A e (B e E)

*3. A C B ACP

*4. C 1, 3 MP

*5. C w D 4, add

*6. E 2, 5 MP

7. (A C B) e E 3-6 CP

8. A e (B e E) 7, exp

QED

5. 1. -F e G / (E C -G) e (F w H)

*2. E C -G ACP

*3. -G C E 2, com

*4. -G 3, simp

*5. --F 1, 4 MT

*6. F 5, DN

*7. F w H 6, add

8. (E C -G) e (F w G) 2-7 CP

QED

6. 1. K e I

2. -K e J / I w J

*3. -I ACP

*4. -K 1, 3 MT

*5. J 2, 4 MP

6. -I e J 3-5 CP

7. --I e J 6, DN

8. I w J 7, impl

QED

7. 1. A e C

2. B e D / (A C B) e (C C D)

*3. A C B ACP

*4. A 3, simp

*5. C 1, 4 MP

*6. B C A 3, com

*7. B 6, simp

*8. D 2, 7 MP

*9. C C D 5, 8 conj

10. (A C B) e (C C D) 3-9 CP

QED

8. 1. -T e -(S C R) / R e (S e T)

*3. R ACP

* *4. S ACP

* *5. S C R 3, 4 conj

* *6. --(S C R) 5, DN

* *7. --T 1, 6 MT

* *8. T 7, DN

*9. S e T 4-8 CP

10. R e (S e T) 3-9 CP

QED
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9. 1. A e C

2. C e D

3. -C w B / A e (B C D)

*4. A ACP

*5. A e D 1, 2 HS

*6. D 4, 5 MP

*7. C 1, 4 MP

*8. --C 7, DN

*9. B 3, 8 DS

*10. B C D 6, 9 conj

11. A e (B C D) 4-10 CP

QED

10. 1. J e -L

2. L w K

3. (K w M) e J / J / K

*4. J ACP

*5. -L 1, 4 MP

*6. K 2, 5 DS

7. J e K 4-6 CP

*8. K ACP

*9. K w M 8, add

*10. J 3, 9 MP

11. K e J 8-10 CP

12. (J e K) C (K e J) 7, 11 conj

13. J / K 12, equiv

QED 

 

Exercises 2.6a

1. / [A w (B C C)] e (A w C)

*1. A w (B C C) ACP

*2. (A w B) C (A w C) 1, dist

*3. (A w C) C (A w B) 2, com

*4. A w C 3, simp

5. [A w (B C C)] e (A w C) 1-4 CP

QED

2. / [(A e B) C C] e (-B e -A)

*1. (A e B) C C ACP

* *2. -B ACP

* *3. A e B 1, simp

* *4. -A 2, 3 MT

*5. -B e -A 2-4 CP

6. [(A e B) C C] e (-B e -A) 1-5 CP

QED



What Follows, Solutions to Exercises, page 357

3. / (O w P) e [-(P w Q) e O]

*1. O w P ACP

* *2. -(P w Q) ACP

* *3. -P C -Q 2, DM

* *4. -P 3, simp

* *5. P w O 1, com

* *6. O 4, 5 DS

*7. -(P w Q) e O 2-6 CP

8. (O w P) e [-(P w Q) e O] 1-7 CP

QED

4. / [V C (W w X)] e (-X e W)

*1. V C (W w X) ACP

* *2. -X ACP

* *3. (W w X) C V 1, com

* *4. W w X 3, simp

* *5. X w W 4, com

* *6. W 2, 5 DS

*7. -X e W 2-6 CP

8. [V C (W w X)] e (-X e W) 1-7 CP

QED

5. / [(D e -E) C (F e E)] e [D e (-F w G)]

*1. (D e -E) C (F e E) ACP

* *2. D ACP

* *3. D e -E 1, simp

* *4. -E 2, 3 MP

* *5. (F e E) C  (D e -E) 1, com

* *6. F e E 5, simp

* *7. -F 4, 6 MT

* *8. -F w G 7, add

*9. D e (-F w G) 2-8 CP

10. [(D e -E) C (F e E)] e [D e (-F w G)] 1-9 CP

QED

6. / [(H e I) e -(I w -J)] e (-H e J)

*1. (H e I) e -(I w -J) ACP

* *2. -H ACP

* *3. -H w I 2, add

* *4. H e I 3, impl

* *5. -(I w -J) 1, 4 MP

* *6. -I C --J 5, DM

* *7. -I C J 6, DN

* *8. J C -I 7, com

* *9. J 8, simp

*10. -H e J 2-9 CP

11.  [(H e I) e -(I w -J)] e (-H e J) 1-10 CP

QED
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7. / [(W e X) C (Y w -X)] e [-(Z w Y) e -W]

*1. (W e X) C (Y w -X) ACP

* *2. -(Z w Y) ACP

* *3. -Z C -Y 2, DM

* *4. -Y C -Z 3, com

* *5. -Y 4, simp

* *6. (Y w -X) C (W e X) 1, com

* *7. Y w -X 6, simp

* *8. -X 5, 7 DS

* *9. W e X 1, simp

* *10. -W 8, 9 MT

*11. -(Z w Y) e -W 2-10 CP

12. [(W e X) C (Y w -X)] e [-(Z w Y) e -W] 1-11 CP

QED

8. / [(R C S) e U] e {-U e [R e (S e T)]}

*1. (R C S) e U ACP

* *2. -U ACP

* * *3. R ACP

* * *4. -(R C S) 1, 2 MP

* * *5. -R w -S 4, DM

* * *6. --R 3, DN

* * *7. -S 5, 6 DS

* * *8. -S w T 7, add

* * *9. S e T 8, impl

* *10. R e (S e T) 3-9 CP

*11. -U e [R e (S e T)] 2-11 CP

12. [(R C S) e U] e {-U e [R e (S e T)]} 1-12 CP

QED

9. / [(-K e N) C -(N w L)] e [(K e L) e M]

*1. (-K e N) C -(N w L) ACP

*2. -K e N 1, simp

*3. -(N w L) C (-K e N) 1, com

*4. -(N w L) 3, simp

*5. -N C -L 4, DM

*6. -N 5, simp

*7. --K 2, 6 MT

*8. -L C -N 5, com

*9. -L 8, simp

*10. --K C -L 7, 9 conj

*11. (--K C -L) w M 10, add

*12. -(-K w L) w M 11, DM

*13. (-K w L) e M 12, impl

*14. (K e L) e M 13, impl

15. [(-K e N) C -(N w L)] e [(K e L) e M] 1-14 CP

QED
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10. / [(D C E) e (F w G)] / [(-F C -G) e (-D w -E)]

*1. (D C E) e (F w G) ACP

* *2. -F C -G ACP

* *3. -(F w G) 2, DM

* *4. -(D C E) 1, 3 MT

* *5. -D w -E 4, DM

*6. (-F C -G) e (-D w-E) 2-5 CP

7. [(D C E) e (F w G)] e  [(-F C -G) e (-D w -E)] 1-6 CP

*8. (-F C -G) e (-D w-E) ACP

* *9. D C E ACP

* *10. --D C --E 2, DN

* *11. -(-D w -E) 3, DM

* *12. -(-F C -G) 1, 4 MT

* *13. --F w --G 12, DM

* *14. F w G 13, DN

*15. (D C E) e (F w G) 9-14 CP

16. [(-F C -G) e (-D w -E)] e [(D C E) e (F w G)] 8-15 CP

17. {[(D C E) e (F w G)] e  [(-F C -G) e (-D w -E)]} C {[(-F C -G) e (-D w -E)] e [(D C E) e (F w G)]}

7, 16 conj

18. [(D C E) e (F w G)] / [(-F C -G) e (-D w -E)] 17, equiv

Exercises 2.6b*

1. (-A e B) e (-B e A) or [(-A e B) C -B] e A

2. (-C w D) e (C e D)

3. [E C (F w G)] e (-E e G)

4. [-(H w I) C (J e I)] e -J

5. [K C (-L w M)] e [(L e -K) e M]

6. [N e (P C Q)] e [-(O w P) e -N]

7. [(R e S) C (S e T)] e [-(T w U) e -R]

8. [(V e W) C (-W w X)] e {[V C (Y C Z)] e X}

9. { [A w (B C C)] C (A e D)} e [-(D w E) e C]

10. [(F e G) C (H e F)] e [(H C I) e (-G e I)]

*Some alternate formulations are possible.
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Exercises 2.7a

1. 1. U e (V w W)

2. -(W w V)

*3. U AIP

*4. V w W 1, 3 MP

*5. -(V w W) 2, com

*6.  (V w W) C -(V w W) 4, 5 conj

7. -U 3-6 IP

QED

2. 1. Y w -Z

2. Z C (-X w W)

*3. X ACP

* *4. -Y AIP

* *5. -Z 1, 4 DS

* *6. Z 2, simp

* *7. Z C -Z 6, 5, Conj

*8. --Y 4-7 IP

*9. Y 8, DN

10. X e Y 3-9 CP

QED

3. 1. X e T

2. Y e T

3. T e Z

*4. X w Y ACP

* *5. -Z AIP

* *6. -T 3, 5, MT

* *7. -Y 2, 6, MT

* *8. -X 1, 6, MT

* *9. Y 4, 8, DS

* *10. Y C -Y 9, 7, Conj

*11. --Z 5-10, IP

*12. Z 11, DN

13. (X w Y) e Z 4-12, CP

QED

4. 1. A e B

2. -(C w -A)

*3. -B AIP

*4. -A 1, 3 MT

*5. -C C --A 2, DM

*6. -C C A 5, DN

*7. A C -C 6, com

*8. A 7, simp

*9. -A C A 4, 8 conj

10. --B 3-9 IP

11. B 10, DN

QED
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5. 1. S e T

2. S w (-R C U)

*3. R ACP

* *4. -T AIP

* *5. -S 1, 4 MT

* *6. (S w -R) C (S w U) 2, dist

* *7. S w -R 6, simp

* *8. -R 5, 7 DS

* *9. R C -R 3, 8 conj

*10. --T 4-9 IP

*11. T 10, DN

12. R e T 3-11 CP

QED

6. 1. F e (E w D)

2. -E C (-D w -F)

*3. F AIP

*4. E w D 1, 3 MP

*5. (-E C -D) w (-E C -F) 2, dist

*6. -(E w D) w (-E C -F) 5, DM

*7. --(E w D) 4, 6 DN

*8. -E C -F 6, 7 DS

*9. -F C -E 8, com

*10. -F 9, simp

*11. F C -F 3, 10 conj

12. -F 3-12 IP

QED

7. 1. -(K C J)

2. I w (L C J)

*3. K ACP

* *4. -I AIP

* *5. L C J 2, 4 DS

* *6. J C L 5, com

* *7. J 6, simp

* *8. -K w -J 1, DM

* *9. --K 3, DN

* *10. -J 8, 9 DS

* *11. J C -J 7, 10 conj

*12. --I 4-11 IP

*13. I 12, DN

14. K e I 3-13 CP

15. -K w I 14, impl

QED
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8. 1. X e (W e Z)

2. Y w W

*3. -Y ACP

*4. W 2, 3, DS

* *5. X ACP

* *6. W e Z 1, 5, MP

* *7. Z 6, 4, MP

*8. X e Z 5-7, CP

9. -Y e (X e Z) 3-8, CP

QED

9. 1. M e L

2. -(K C N) e (M w L)

*3. -(K w L) AIP

*4. -K C -L 3, DM

*5. -L C K 4, com

*6. -L 5, simp

*7. -M 1, 6 MT

*8. -K 4, simp

*9. -K w -N 8, add

*10. -(K C N) 9, DM

*11. M w L 1, 10 MP

*12. L 7, 11 DS

*13. -L C L 6, 12 conj

14. --(K w L) 1-13 IP

15. K w L 14, DN

QED

10. 1. A / (B C D)

2. C e (E w F)

3. (A w -E) C (A w -F)

*4. C ACP

*5. E w F 2, 4, MP

*6. (-E w A) C (A w -F) 3, Com

*7. (-E w A) C (-F w A) 6, Com

*8. (E e A) C (-F w A) 7, Impl

*9. (E e A) C (F e A) 8, Impl

*10. A w A 9, 5, CD

*11. A 10, Taut

*12. B C D 1, 11, MP

*13. B 12, Simp

14. C e B 4-13, CP

QED
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11. 1. H e G

2. H w J

3. -(J w -I)

*4. -(G C I) AIP

*5. -G w -I 4, DM

*6. G e -I 5, impl

*7. H e -I 1, 6 HS

*8. -J C --I 3, DM

*9. --I C -J 8, com

*10. --I 9, simp

*11. -H 7, 10 MT

*12. J 2, 11 DS

*13. -J 8, simp

*14. J C -J 12, 13 conj

15. --(G C I) 4-14 IP

16. G C I 15, DN

QED

12. 1. X e Y

2. -(Z e W)

*3. X ACP

* *4. -(Y C Z) AIP

* *5. -Y w -Z 4, DM

* *6. Y e -Z 5, impl

* *7. X e -Z 1, 6 HS

* *8. -Z 3, 7 MP

* *9. -(-Z w W) 2, impl

* *10. --Z C -W 9, DM

* *11. Z C -W 10, DN

* *12. Z 11, simp

* *13. -Z C Z 8, 12 conj

*14. --(Y C Z) 4-13 IP

*15. Y C Z 14, DN

16. X e (Y C Z) 3-15 CP

QED

13. 1. M e (L C -P)

2. K e -(O C -P)

3. N e O

*4. K C M ACP

*5. K 4, Simp

*6. -(O C -P) 2, 5, MP

*7. -O w --P 6, DM

*8. M C K 4, Com

*9. M 8, Simp

*10. L C -P 1, 9, MP

*11. -P C L 10, Com

*12. -P 11, Simp

*13. ---P 12, DN

*14. --P w-O 7, Com

*15. -O 14, 13, DS

*16. -N 3, 15, MT

17. (K C M) e -N 4-16 CP

QED
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14. 1. A e B

2. -C e -(A w -D)

3. -D w (B C C)

*4. A ACP

* *5. -(B C C) AIP

* *6. -B w -C 5, DM

* *7. B e -C 6, impl

* *8. B e -(A w -D) 2, 7 HS

* *9. A e -(A w -D) 1, 8 HS

* *10. -(A w -D) 4, 9 MP

* *11. -A C --D 10, DM

* *12. --D C -A 11, com

* *13. --D 12, simp

* *14. B C C 3, 13 DS

* *15. -(B C C) C (B C C) 5, 14 conj

*16. --(B C C) 5,-15 IP

*17. B C C 16, DN

18. A e (B C C) 4-17 CP

QED

15. 1. P / (Q w -R)

2. T C -(Q C P)

*3. P C R AIP

*4. [P e (Q w -R)] C [(Q w -R) e P] 1, equiv

*5. P e (Q w -R) 4, simp

*6. P 3, simp

*7. Q w -R 5, 6 MP

*8. -R w Q 7, com

*9. R C P 3, com

*10. R 9, simp

*11. --R 10, DN

*12. Q 8, 11 DS

*13. T C (-Q w -P) 2, DM

*14. (-Q w -P) C T 13, com

*15. -Q w -P 14, simp

*16. --Q 12, DN

*17. -P 15, 16 DS

*18. P C -P 6, 17 conj

19. -(P C R) 3-18 IP

QED
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16. 1. A / -(B w C)

2. (D w E) e -C

3. -(A C D)

*4. D

* *5. -B AIP

* *6. [A e -(B w C)] C [-(B w C) e A] 1, equiv

* *7. [-(B w C) e A] C [A e -(B w C)] 6, com

* *8. -(B w C) e A 7, simp

* *9. D w E 4, add

* *10. -C 2, 9 MP

* *11. -B C -C 5, 10 conj

* *12. -(B w C) 11, DM

* *13. A 8, 12 MP

* *14. -A w -D 3, DM

* *15. --A 13, DN

* *16. -D 14, 15 DS

* *17. D C -D 4, 16 conj

*18. --B 5-17 IP

*19. B 18, DM

20. D e B 4-19 CP

QED

17. 1. U e (P C -Q)

2. T e (S w U)

3. -T e -R

*4. P e Q ACP

* *5. R ACP

* * *6. -S AIP

* * *7. U e (--P C -Q) 1, DN

* * *8. U e -(-P w Q) 7, DM

* * *9. U e -(P e Q) 8, impl

* * *10. --(P e Q) 4, DN

* * *11. -U 9, 10 MT

* * *12. -S C -U 6, 11 conj

* * *13. - (S w U) 12, DM

* * *14. -T 2, 13 MT

* * *15. -R 3, 14 MP

* * *16. R C -R 5, 15 conj

* *17. --S 6-16 IP

* *18. S 17, DN

*19. R e S 5-18 CP

20. (P e Q) e (R e S) 4-19 CP

QED
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18. 1. B e C

2. E / -(B w A)

3. D e -E

*4. D ACP

* *5. -(A w C) AIP

* *6. -A C -C 5, DM

* *7. -C C -A 6, com

* *8. -C 7, simp

* *9. -B 1, 8 MT

* *10. -A 6, simp

* *11. -B C -A 9, 10 conj

* *12. -(B w A) 11, DM

* *13. [E e -(B w A)] C [-(B w A) e E] 2, equiv

* *14. [-(B w A) e E] C [E e -(B w A)] 13, com

* *15. -(B w A) e E 14, simp

* *16. E 12, 15 MP

* *17. -E 3, 4 MP

* *18. E C -E 16, 17 conj

*19. --(A w C) 5-18 IP

*20. A w C 19, DN

21. D e (A w C) 4-20 CP

QED

19. 1. Z e Y

2. Z w W

3. Y e -W

4. W / -X

5. (W e -X) C (-X e W) 4, equiv

*6. X ACP

* *7. -Y AIP

* *8. -Z 1, 7 MT

* *9. W 2, 8 DS

* *10. W e -X 5, simp

* *11. -X 9, 10 MP

* *12. X C -X 6, 11 conj

*13. --Y 7-12 IP

*14. Y 13, DN

15. X e Y 6-14 CP

*16. Y ACP

*17. -W 3, 16 MP

*18. (-X e W) C (W e -X) 5, com

*19. -X e W 18, simp

*20. --X 17, 19 MT

*21. X 20, DN

22. Y e X 16-21 CP

23. (X e Y) C (Y e X) 15, 22 conj

24. X / Y 23, equiv

QED
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20. 1. F e (K / M)

2. -F e [L e (F / H)]

3. -(M w -L)

4. -H e -(-K C L)

5. -M C --L 3, DM

*6. F ACP

*7. K / M 1, 5 MP

*8. (K e M) C (M e K) 7, equiv

*9. K e M 8, simp

*10. -M 5, simp

*11. -K 9, 10 MT

* *12. -H AIP

* *13. -(-K C L) 4, 12 MP

* *14. --K w -L 13, DM

* *15. K w -L 14, DN

* *16. -L 11, 15 DS

* *17. --L C -M 5, com

* *18. --L 17, simp

* *19. -L C --L 16, 18 conj

*20. --H 12-19 IP

*21. H 20, DN

22. F e H 6- 21 CP

*23. H ACP

* *24. -F AIP

* *25. L e (F / H) 2, 24 MP

* *26. --L C -M 5, com

* *27. L C -M 26, DN

* *28. L 27, simp

* *29. F / H 25, 28 MP

* *30. (F e H) C (H e F) 29, equiv

* *31. (H e F) C (F e H) 30, com

* *32. H e F 31, simp

* *33. F 23, 32 MP

* *34. -F C F 24, 33 conj

*35. --F 24-34 IP

*36. F 35, DN

37. H e F 23-36 CP

38. (F e H) C (H e F) 22, 37 conj

39. F / H 38, equiv

QED
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Exercises 2.7b

1. 1. Q e P

2. -P w -Q / -Q

*3. Q AIP

*4. P 1, 3 MP

*5. -(P C Q) 2, DM

*6. P C Q 3, 4 conj

*7. -(P C Q) C (P C Q) 5, 6 conj

8. -Q 3-7 IP

QED

2. 1. (M C -N) w O

2. -M / O

*3. -O AIP

*4. O w (M C -N) 1, com

*5. M C -N 3, 4 DS

*6. M 5, simp

*7. -M C M 2, 6 conj

8. --O 3-7 IP

9. O 8, DN

QED

3. 1. G e H

2. H e (I C -G) / -G

*3. G AIP

*4. G e (I C -G) 1, 2 HS

*5. I C -G 3, 4 MP

*6. -G C I 5, com

*7. -G 6, simp

*8. G C -G 3, 7 conj

9. -G 3-8 IP

QED

4. 1. J e K

2. J w (L C J) / K

*3. -K AIP

*4. -J 1, 3 MT

*5. L C J 2, 4 DS

*6. J C L 5, com

*7. J 6, simp

*8. -J C J 4, 7 conj

9. --K 3-8 IP

10. K 9, DN

QED



What Follows, Solutions to Exercises, page 369

5. 1. (X w Y) e V

2. W e -V / W e -X

*3. W ACP

* *4. X AIP

* *5. X w Y 4, add

* *6. V 1, 5 MP

* *7. --V 6, DN

* *8. -W 2, 7 MT

* *9. W C -W 3, 8 conj

*10. -X 4-9 IP

11. W e -X 3-10 CP

QED

6. 1. O e M

2. O w N / M w N

*3. -(M w N) AIP

*4. -M C -N 3, DM

*5. -M 4, simp

*6. -O 1, 5 MT

*7. N 2, 6 DS

*8. -N C -M 4, com

*9. -N 8, simp

*10. N C -N 7, 9 conj

11. --(M w N) 3-10 IP

12. M w N 11, DN

QED

7. 1. G e E

2. G w H

3. F e -H / E w -F

*4. -E ACP

* *5. F AIP

* *6. -G 1, 4 MT

* *7. H 2, 6 DS

* *8. --H 7, DN

* *9. -F 3, 8 MT

* *10. F C -F 5, 9 conj

*11. -F 5-10 IP

12. -E e -F 4-11 CP

13. --E w -F 12, impl

14. E w -F 13, DN

QED
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8. 1. O / (P w Q)

2. -(Q e O) / -(N C P)

*3. N C P AIP

*4. P C N 3, com

*5. P 4, simp

*6. P w Q 5, add

*7. [O e (P w Q)] C [(P w Q) e O] 1, equiv

*8. [(P w Q) e O] C [O e (P w Q)] 7, com

*9. (P w Q) e O 8, simp

*10. O 6, 9 MP

*11. -(-Q w O) 2, impl

*12. --Q C -O 11, DM

*13. -O C --Q 12, com

*14. -O 13, simp

*15. O C -O 10, conj

16. -(N C P) 3-15 IP

QED

9. 1. (I C -G) e F

2. H w J

3. J e I / -(F w G) e H

*4. -(F w G) ACP

* *5. -H AIP

* *6. J 2, 5 DS

* *7. I 3, 6 MP

* *8. I e (-G e F) 1, exp

* *9. -(-G e F) e -I 8, cont

* *10. -(-F e --G) e -I 9, cont

* *11. -(--F w --G) e -I 10, impl

* *12. -(F w G) e -I 11, DN

* *13. -I 4, 12 MP

* *14. I C -I 7, 13 conj

*15. --H 5-14 IP

*16. H 15, DM

17. -(F w G) e H 4-16 CP

QED
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10. 1. T e -R

2. -(S w V)

3. T C (U w -R) / -(R w S)

*4. R w S AIP

*5. --R w S 4, DN

*6. -R e S 5, impl

*7. T e S 1, 6 HS

*8. -S C -V 2, DM

*9. -S 8, simp

*10. (T C U) w (T C -R) 3, dist

*11. -T 7, 9 MT

*12. -T w -U 11, add

*13. -(T C U) 12, DM

*14. T C -R 10, 13

*15. -R C T 14, com

*16. -R 15, simp

*17. S 4, 16 DS

*18. -S C S 9, 17 conj

19. -(R w S) 4-18 IP

QED 

Chapter 3

Exercises 3.1a

1. Ta

2. Sb

3. Dd

4. Lg

5. Cs

6. Gc C Gg

7. Dh w Di

8. -Rj

9. -Wk

10. Bl w Bm

11. Pn C Po

12. Fp e -Ip

13. Pr / Nr

14. Is e Js

15. Ch / Is

Exercises 3.1b

1. (�x)(Cx e Dx)

2. (�x)(Mx e Fx)

3. (�x)(Tx C Gx)

4. (�x)(Fx C -Bx)

5. (�x)(Cx C Rx)

6. (�x)(Fx e Sx)

7. (�x)(Px C Wx)

8. -(�x)(Bx e Yx)

9. (�x)(Cx C -Fx)

10. (�x)(Mx e Lx)

11. (�x)(Bx C -Sx)

12. -(�x)(Wx e Ex)

13. (�x)(Px C Sx)

14. (�x)(Dx C Sx)

15. (�x)(Hx e Mx)

16. (�x)(Mx C -Dx)

17. -(�x)(Sx e Px)

18. (�x)(Sx C -Hx)

19. (�x)(Dx e -Ax)

20. (�x)(Lx e Cx)
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Exercises 3.1c

1. (�x)[(Px C Fx) C Sx]

2. (�x)[(Px C Fx) C -Sx]

3. (�x)[(Rx C Fx) e Sx]

4. (�x)[(Ox C Fx) e -Sx]

5. (�x)[Px C (Ix C -Fx)]

6. (�x)[(Px C Fx) e Sx]

7. (�x)[(Px C Fx) e -Cx]

8. (�x)(Cx e Wx) C (�x)(Dx e Wx)

9. (�x)(Cx C Ex) C (�x)(Dx e Ex)

10. -(�x)[(Dx w Cx) e Lx]

11. (�x)[Rx C Bx) C Kx]

12. (�x)[(Rx C Bx) e -Ux]

13. -(�x)[(Rx C Bx) e Dx]

14. (�x)[(Ax C Px) C Ix]

15. (�x)[(Ax C Px) C Cx]

16. (�x)[Px e (Ax C Lx)]

17. (�x)[(Ax C Tx) C -Sx]

18. (�x)[(Tx C Ax) e Wx]

19. (�x)[Ax C (Tx / Dx)]

20. (�x)[Px e (Tx C Ax)]

21. (�x)[(Nx C Px) C Ex]

22. -(�x)[(Nx C Px) e Ox]

23. (�x)[(Nx C Px) e Ox] e (�x)[(Nx C Px) e -Ex]

24. (�x)(Lx e Sx)

25. (�x)[(Sx C Lx) e Gx]

26. (�x)[(Gx w Cx) e Mx)]

27. (�x)(Gx e Hx) C (�x)(Cx C Hx)

28. (�x)[(Rx C Px) e Sx]

29. (�x)[(Px C Sx) e (Cx w Hx)]

30. (�x)[(Px C Sx) C (Cx C -Ix)]

31. (�x)(Px e Wx) w (�x)(Px C Cx)

32. (�x)(Sx e Wx)

33. (�x)[Px e (Wx e Sx)]

34. -(�x)(Px C Sx) w (�x)(Px C Rx)

35. [(�x)(Cx C Sx) C (�x)(Px C Ix)] e (�x)(Px C Tx)

36. (�x)[(Sx C Hx) e Cx]

37. (�x)[(Cx C Hx) e Sx]

38. (�x)[(Sx C Hx) e Cx]

39. (�x)[(Ux C Cx) e Px]

40. (�x)[(Cx C Px) e Ux]

41. (�x)[(Ux C Fx) C -Px]

42. -(�x)[(Ex C Sx) e Dx]

43. (�x)[(Sx C -Dx) e -Ex]

44. (�x)(Sx e Hx) w (�x)(Sx C Ix)

45. (�x){Hx e [Cx / (Tx C Gx)]}

46. (�x)[(Bx w Wx) e (Hx C Sx)]

47. (�x)(Px C Ax) e (�x)(Cx C Mx)

48. (�x){Sx e [Px e (Vx C Fx)]}

49. (�x)(Sx C Dx) C (�x)(Px C Fx)

50. (�x)[(Rx C Bx) C Ex] C (�x)[(Rx C Wx) e Ex]

51. [(�x)(Tx C Bx) C (�x)(Sx C Lx)] e (�x)(Sx C -Gx)

52. (�x)[Jx e (-Wx w Lx)]

53. (�x){Cx e {Px / [(�y)(My e Gy) C (�y)(Sy e -Wy)]}}

Exercises 3.2

1. a) Px C Qx, Px, Qx

b) Both ‘x’s

c) There are no unbound variables

d) Closed

e) (�x)

2. a) (Px C Qx) e -Ra, Px C Qx, Px, Qx,

-Ra, Ra

b) Both ‘x’s

c) There are no unbound variables

d) Closed

e) (�x)

3. a) (�x): Px C Qx, Px, Qx

(�x): (Px w Qy) w Rx, Px w Qy, Px, Qy,

Rx

b) (�x): The two ‘x’s in its scope

(�x): The two ‘x’s in its scope

c) The ‘y’ in ‘Qy’ is unbound

d) Open

e) e

4. a) Py

b) There are no bound variables

c) The ‘y’ is unbound

d) Open

e) (�x)

5. a) Px

b) Only the ‘x’ in ‘Px’ is bound

c) The ‘x’ in ‘Qx’ unbound

d) Open

e) e

6. a) Px w (-Qy C Rx), Px, -Qy C Rx,

-Qy, Qy, Rx

b) Both ‘x’s are bound

c) The ‘y’ is unbound

d) Open

e) -

7. a) Pa e Qb, Pa, Qb

b) There are no bound variables

c) There are no unbound variables

d) Closed

e) (�y)

8. a) Ry C Qx, Ry, Qx, Pa

b) The ‘x’ is bound

c) The ‘y’ is unbound

d) Open

e) C
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9. a) (�x): Rx C -Qx, Rx, -Qx, Qx

(�x): Px e Qa, Px, Qa

b) (�x): The ‘x’s in ‘Rx’ and ‘Qx’

(�x): The ‘x’ in ‘Px’

c) There are no unbound variables

d) Closed

e) /

10. There are no quantifiers

b) There are no bound variables

c) There are no unbound variables

d) Closed

e) e

11. a) (�x): Px w Qx, Px, Qx

(�y): -Qy e -Py, -Qy, Qy, -Py, Py

b) (�x): The two ‘x’s

(�y): The two ‘y’s

c) There are no unbound variables

d) Closed

e) e

12. a) (�x): [(Px w Rx) C Qy] e (�y)[(Rx e Qy) C Pb], 

(Px w Rx) C Qy, Px w Rx, Px, Rx, Qy, (�x)[(Rx e Qy) C Pb], (Rx e

Qy) C Pb, Rx e Qy, Rx, Qy, Pb

(�y): (Rx e Qy) C Pb, Rx e Qy, Rx, Qy, Pb

b) (�x): All three ‘x’s are bound

(�y): The ‘y’ in its scope is bound

c) The ‘y’ in the first ‘Qy’ is unbound

d) Open

e) (�x)

13. a) (Px / Rx) e Qa, Px / Rx, Px, Rx,

Qa

b) Both ‘x’s are bound

c) There are no unbound variables

d) Closed

e) -

14. a) Qx w Px, Qx, Px

b) No variables are bound

c) Both ‘x’s are unbound

d) Open

e) -

15.  a) (�x): (Px C Qy) e (�y)[(Ry e Sy) C

Tx], 

Px C Qy, Px, Qy, (�y)[(Ry e Sy) C Tx],

(Ry e Sy) C Tx, Ry e Sy, Ry, Sy, Tx

(�y):  (Ry e Sy) C Tx, Ry e Sy, Ry, Sy,

Tx

b) (�x): Both ‘x’s are bound

(�y): The ‘y’s in ‘Ry’ and ‘Sy’ are bound.

c) The ‘y’ in ‘Qy’ is unbound

d) Open

e) (�x)

Exercises 3.3

1. 1. (�y)(Ny C Oy)

2. Na C Oa 1, EI

3. Na 2, simp

4. Nb C Ob 1, EI

5. Ob C Nb 4, com

6. Ob 5, simp

7. Na C Ob 3, 7 conj

QED

2. 1. (�x)Hx w Ja

2. (�x)[(-Jx C Ix) w (-Jx C Kx)]

3. Ja w (�x)Hx 1, com

4. (-Ja C Ia) w (-Ja C Ka) 2, UI

5. -Ja C (Ia w Ka) 4, dist

6. -Ja 5, simp

7. (�x)Hx 3, 6 DS

QED

3. 1. (�x)(Px C -Qx)

2. Pa C -Qa 1, EI

3. -Qa C Pa 2, com

4. -Qa 3, simp

5. -Qa w Ra 4, add

6. Qa e Ra 5, impl

7. (�x)(Qx e Rx) 6, EG

QED

4. 1. (�x)(Tx C Ux) e (�x)Vx

2. (�x)[(Wx C Tx) C Ux]

3. (Wa C Ta) C Ua 2, EI

4. Wa C (Ta C Ua) 3, assoc

5. (Ta C Ua) C Wa 4, com

6. Ta C Ua 5, simp

7. (�x)(Tx C Ux) 6, EG

8. (�x)Vx 1, 7 MP

QED
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5. 1. (�x)(Ax e Bx)

2. (�x)(Cx e -Bx)

3. Aa / -Ca

4. Aa e Ba 1, UI

5. Ba 4, 3, MP

6. Ca e -Ba 2, UI

7. --Ba 5, DN

8. -Ca 6, 7, MT

QED

6. 1. (�x)(Ax e Bx)

2. (�x)(Cx e -Bx)

3. Ax e Bx 1, UI

4. Cx e -Bx 2, UI

5. -Bx e -Ax 3, cont

6. Cx e -Ax 4, 5 HS

7. (�x)(Cx e -Ax) 6, UG

QED

7. 1. (�x)(Jx C Kx)

2. Ja C Ka 1, UI

3. Ja 2, simp

4. Ka C Ja 2, com

5. Ka 4, simp

6. (�x)Jx 3, EG

7. (�x)Kx 5, EG

8. (�x)Jx C (�x)Kx 6, 7 conj

QED

8. 1. (�x)(Dx C -Ex)

2. (�x)(Ex w Fx)

3. Da C -Ea 1, EI

4. Ea w Fa 2, UI

5. -Ea C Da 3, com

6. -Ea 5, simp

7. Fa 4, 6 DS

8. (�x)Fx 7, EG

QED

9. 1. (�x)(Ax C -Bx)

2. (�x)(Cx e Bx) / (�x)(Ax C -Cx)

3. Aa C -Ba 1, EI

4. -Ba C Aa 3, Com

5. -Ba 4, Simp

6. Ca e Ba 2, UI

7. -Ca 6, 5, MT

8. Aa 3, Simp

9. Aa C -Ca 8, 7, Conj

10. (�x)(Ax C -Cx) 9, EG

QED

10. 1. (�x)(Px C Qx)

2. (�x)(Rx C Sx)

3. Pa C Qa 1, EI

4. Rb C Sb 2, EI

5. Pa 3, simp

6. Rb 4, simp

7. Pa C Rb 5, 6 conj

QED

11. 1. (�x)(Fx C Hx) / Gb

2. Gb / Fa

3. [(�x)(Fx C Hx) e Gb)] C [Gb e (�x)(Fx C Hx)] 1, equiv

4. [Gb e (�x)(Fx C Hx)] C [(�x)(Fx C Hx) e Gb)] 3, com

5. Gb e (�x)(Fx C Hx) 4, simp

6. (�x)(Fx C Hx) 5, 2, MP

7. Fa C Ha 6, EI

8. Fa 7, simp

QED

12. 1. (�x)(Fx / Gx)

2. Fx / Gx 1, UI

3. (Fx e Gx) C (Gx e Fx) 2, equiv

4. Fx e Gx 3, simp

5. (�x)(Fx e Gx) 4, UG

6. (Gx e Fx) C (Fx e Gx) 3, com

7. Gx e Fx 6, simp

8. (�x)(Gx e Fx) 7, UG

9. (�x)(Fx e Gx) C (�x)(Gx e Fx) 5, 8 conj

QED
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13. 1. (�x)Ax e Ba

2. (�x)-(Ax e Cx)

3. -(Ax e Cx) 2, UI

4. -(-Ax w Cx) 3, impl

5. --Ax C -Cx 4, DM

6. --Ax 5, simp

7. Ax 6, DN

8. (�x)Ax 7, UG

9. Ba 1, 8 MP

10. (�x)Bx 9, EG

QED

14. 1. (�x)Lx / Nb

2. (�x)[(Lx C Mx) C Ox]

3. (La C Ma) C Oa 2, EI

4. La C (Ma C Oa) 3, assoc

5. La 4, simp

6. (�x)Lx 5, EG

7. [(�x)Lx e Nb] C [Nb e (�x)Lx] 1, equiv

8. (�x)Lx e Nb 7, simp

9. Nb 6, 8 MP

10. (�x)Nx 9, EG

QED

15. 1. (�x)(Fx w Hx) e (�x)Ex

2. (�x)[Fx w (Gx C Hx)]

3. Fx w (Gx C Hx) 2, UI

4. (Fx w Gx) C (Fx w Hx) 3, dist

5. (Fx w Hx) C (Fx w Gx) 4, com

6. Fx w Hx 5, simp

7. (�x)(Fx w Hx) 6, UG

8. (�x)Ex 1, 7 MP

9. Ea 8, EI

10. (�y)Ey 9, EG

QED

16. 1. (�x)(Ix e Kx)

2. (�x)(Jx e Lx)

3. (�x)(Jx w Ix)

4. Ja w Ia 3, EI

5. Ia e Ka 1, UI

6. Ja e La 2, UI

7. Ia w Ja 4, com

8. (Ia e Ka) C (Ja e La) 5, 6 conj

9. Ka w La 7, 8 CD

10. (�x)(Kx w Lx) 9, EG

QED
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17. 1. (x)[Gx e (Hx w Ix)]

2. (�x)(Gx C -Ix) / (�x)(Gx C Hx)

3. Ga C -Ia 2, EI

4. Ga 3, Simp

5. Ga e (Ha w Ia) 1, UI

6. Ha w Ia 5, 4, MP

7. -Ia C Ga 3, Com

8. -Ia 7, Simp

9. Ia w Ha 6, Com

10. Ha 9, 8, DS

11. Ga C Ha 4, 10, Conj

12. (�x)(Gx C Hx) 11, EG

QED

18. 1. (�x)(Ax / Cx)

2. (�x)(Bx e Cx)

3. Ba

4. Aa / Ca 1, UI

5. Ba e Ca 2, UI

6. (Aa e Ca) C (Ca e Aa) 4, equiv

7. (Ca e Aa) C (Aa e Ca) 6, com

8. Ca e Aa 7, simp

9. Ba e Aa 5, 8 HS

10. Aa 3, 9 MP

11. (�x)Ax 10, EG

QED

19. 1. (�x)(Ax C Bx)

2. (�x)(Ax e Cx)

3. (�x)(Bx e Dx) / (�x)(Cx C Dx)

4. Aa C Ba 1, EI

5. Aa 4, Simp

6. Aa e Ca 2, UI

7. Ca 6, 5, MP

8. Ba C Aa 4, Com

9. Ba 8, Simp

10. Ba e Da 3, UI

11. Da 10, 8, MP

12. Ca C Da 7, 11, Conj

13. (�x)(Cx C Dx) 12, Conj

QED

20. 1. (�x)(Mx e Nx)

2. (�x)(Ox e Px)

3. (�x)[Mx w (Ox C Qx)]

4. Mx e Nx 1, UI

5. Ox e Px 2, UI

6. Mx w (Ox C Qx) 3, UI

7. (Mx w Ox) C (Mx w Qx) 6, dist

8. Mx w Ox 7, simp

9. (Mx e Nx) C (Ox e Px) 4,5 conj

10. Nx w Px 8, 9 CD

11. (�x)(Nx w Px) 10, UG

QED

21.  1. (�x)(Ax C Bx) w (-Ca C Da)

2. (�x)(Dx e Cx) / (�x)(Ax C Bx)

3. Da e Ca 2, UI

4. -Da w Ca 3, Impl

5. --(-Da w Ca) 4, DN

6. -(--Da C -Ca) 5, DM

7. -(Da C -Ca) 6, Com

8. -(-Ca C Da) 7, Com

9. (-Ca C Da) w (�x)(Ax C Bx) 1, Com

10. (�x)(Ax C Bx) 9, 8, DS

QED

22. 1. (�x)(Fx C Gx)

2. (�x)(-Gx w Ex)

3. -Ga w Ea 2, EI

4. Fa C Ga 1, UI

5. Ga e Ea 3, impl

6. Ga C Fa 4, com

7. Ga 6, simp

8. Ea 5,7 MP

9. Fa 4, simp

10. Fa C Ea 9, 8 conj

11. (�x)(Fx C Ex) 10, EG

QED

23. 1. (�x)(Mx e Nx)

2. (�x)(-Nx C Ox)

3. (�x)-Mx e (�x)-Ox / (�x)Ox C (�x)-Ox

4. -Na C Oa 2, EI

5. -Na 4, simp

6. Ma e Na 1, UI

7. -Ma 6, 5 MT

8. (�x)-Mx 7, EG

9. (�x)-Ox 3, 8, MP

10. Oa C -Na 4, Com

11. Oa 10, Simp

12. (�x)Ox 11, EG

13. (�x)Ox C (�x)-Ox 12, 9, Conj

QED

24. 1. (�x)(Dx e Ex)

2. (�x)(Ex e -Gx)

3. (�x)Gx / (�x)-Dx

4. Ga 3, EI

5. --Ga 4, DN

6. Ea e -Ga 2, UI

7. -Ea 6, 5, MT

8. Da e Ea 1, UI

9. -Da 8, 7, MT

10. (�x)-Dx 9, EG

QED

25. 1. (�x)(Mx C Ox) e (�x)Nx
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2. (�x)(Px C Mx)

3. (�x)(-Px w Ox)

4. Pa C Ma 2, EI

5. -Pa w Oa 3, UI

6. Pa 4, simp

7. --Pa 6, DN

8. Oa 5, 7 DS

9. Ma C Pa 4, com

10. Ma 9, simp

11. Ma C Oa 8, 10 conj

12. (�x)(Mx C Ox) 11, EG

13. (�x)Nx 1, 12 MP

QED

26. 1. (�x)(Dx C Ex)

2. (�x)(-Fx w Gx)

3. -Fa w Ga 2, EI

4. Da C Ea 1, UI

5. (Da C Ea) C (-Da C -Ea) 4, add

6. Da / Ea 5, equiv

7. Fa e Ga 3, impl

8. (Da / Ea) C (Fa e Ga) 6,7 conj

9. (�x)[(Dx / Ex) C (Fx e Gx)] 8, EG

QED

27. 1. (�x)[Tx w (Ux C Vx)]

2. (�x)(Wx e -Tx)

3. Tx w (Ux C Vx) 1, UI

4. Wx e -Tx 2, UI

5. (Tx w Ux) C (Tx w Vx) 3, dist

6. Tx w Ux 5, simp

7. --Tx w Ux 6, DN

8. -Tx e Ux 7, impl

9. Wx e Ux 4, 8 HS

10. (�x)(Wx e Ux) 9, UG

QED

28. 1. (�x)(Lx / Nx)

2. (�x)(Nx e Mx)

3. (�x)-(Mx w Ox)

4. La / Na 1, UI

5. Na e Ma 2, UI

6. -(Ma w Oa) 3, UI

7. (La e Na) C (Na e La) 4, equiv

8. La e Na 7, simp

9. La e Ma 5, 8 HS

10. -Ma C -Oa 6, DM

11. -Ma 10, simp

12. -La 9, 11 DM

13. (�x)-Lx 12, EG

QED
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29. 1. (�x)[Hx C (Ix w Jx)]

2. (�x)(Kx e -Ix)

3. (�x)(Hx e Kx)

4. Ha C (Ia w Ja) 1, EI

5. Ka e -Ia 2, UI

6. Ha e Ka 3, UI

7. Ha e -Ia 6, 5, HS

8. (Ha C Ia) w (Ha C Ja) 4, Dist

9. -Ha w -Ia 7, impl

10. -(Ha C Ia) 9, DM

11. Ha C Ja 8, 10 DS

12. Ja C Ha 11, com

13. Ja 12, simp

14. (�x)Jx 13, EG

QED

30. 1. (�x)(Dx C Fx)

2. (�x)(Gx e Ex)

3. (�x)-(Hx w Ex)

4. Da C Fa 1, EI

5. Gb e Eb 2, EI

6. -(Hb w Eb) 3, UI

7. -Hb C -Eb 6, DM

8. -Eb C -Hb 7, com

9. -Eb 8, simp

10. -Gb 5, 9 MT

11. Fa C Da 4, com

12. Fa 11, simp

13. (�x)Fx 12, EG

14. (�x)-Gx 10, EG

15. (�x)Fx C (�x)-Gx 13, 14 conj

QED

31. 1. (�x)(Rx / Tx)

2. (�x)(Tx C -Sx)

3. (�x) [Sx w (Rx e Ux)] / (�x)Ux

4. Ta C -Sa 2, EI

5. Ta 4, Simp

6. Ra / Ta 1, UI

7. (Ra e Ta) C (Ta e Ra) 6, Equiv

8. (Ta e Ra) C (Ra e Ta) 7, Com

9. Ta e Ra 8, Simp

10. Ra 9, MP

11. -Sa C Ta 4, Com

12. -Sa 11, Simp

` 13. Sa w (Ra e Ua) 3, UI

14. Ra e Ua 13, 12, DS

15. Ua 14, 10, MP

16. (�x)Ux 15, EG

QED
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32. 1. (�x)Ix e (�x)Kx

2. (�x)[Jx C (Ix w Lx)]

3. (�x)(Jx e -Lx)

4. Jx C (Ix w Lx) 2, UI

5. Jx e -Lx 3, UI

6. Jx 4, simp

7. -Lx 5,6 MP

8. (Ix w Lx) C Jx 4, com

9. Ix w Lx 8, simp

10. Lx w Ix 9, com

11. Ix 7, 10 DS

12. (�x)Ix 11, UG

13. (�x)Kx 1, 12 MP

QED 

33. 1. (�x)(Px w Qx) / Rc

2. (�x)-(Sx w -Qx)

3. -(Sx w -Qx) 2, UI

4. -Sx C --Qx 3, DM

5. -Sx C Qx 4, DN

6. Qx C -Sx 5, com

7. Qx 6, simp

8. Qx w Px 7, add

9. Px w Qx 8, com

10. (�x)(Px w Qx) 9, UG

11. [(�x)(Px w Qx) e Rc] C [Rc e (�x)(Px w Qx)] 1, equiv

12. (�x)(Px w Qx) e Rc 11, simp

13. Rc 10, 12 MP

14. (�y)Ry 13, EG

QED

34. 1. (�x)Qx / (�x)Sx

2. (�x)(Rx w Sx)

3. (�x)-(Rx w Qx)

4. -(Ra w Qa) 3, EI

5. Ra w Sa 2, UI

6. -Ra C -Qa 4, DM

7. -Ra 6, simp

8. Sa 5, 7 DS

9. (�x)Sx 8, EG

10. [(�x)Qx e (�x)Sx] C [(�x)Sx e (�x)Qx] 1, equiv

11. [(�x)Sx e (�x)Qx] C [(�x)Qx e (�x)Sx] 10, com

12. (�x)Sx e (�x)Qx 11, simp

13. (�x)Qx 9, 12 MP

14. Qb 13, EI

QED
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35. 1. (�x)Ax e (�x)Cx

2. (�x)(-Bx e Dx)

3. (�x)(Bx e Ax)

4. (�x)-(Dx w -Cx)

5. -(Da w -Ca) 4, EI

6. -Ba e Da 2, UI

7. Ba e Aa 3, UI

8. -Da e --Ba 6, cont

9. -Da e Ba 8, DN

10. -Da C --Ca 5, DM

11. -Da 10, simp

12. -Da e Aa 7, 9 HS

13. Aa 11, 12 MP

14. (�x)Ax 13, EG

15. (�x)Cx 11, 14 MP

QED

36. 1. (�x)(Kx e Lx)

2. (�x)(Lx e Mx)

3. Ka C Kb

4. Ka e La 1, UI

5. Ka 3, simp

6. La 4,5 MP

7. (�x)Lx 6, EG

8. Kb e Lb 1, UI

9. Lb e Mb 2, UI

10. Kb e Mb 8, 9 HS

11. Kb C Ka 3, com

12. Kb 11, simp

13. Mb 10, 12 MP

14. (�y)My 13, EG

15. (�x)Lx C (�y)My 7, 14 conj

QED

37. 1. (�x)(Ox e Qx)

2. (�x)(Ox w Px)

3. (�x)(Nx C -Qx) / (�x)(Nx C Px)

4. Na C -Qa 3, EI

5. Na 4, simp

6. -Qa C Na 4, Com

7. -Qa 6, Simp

8. Oa e Qa 1, UI

9. -Oa 8, 7, MT

10. Oa w Pa 2, UI

11. Pa 10, 9, DS

12. Na C Pa 5, 11, Conj

13. (�x)(Nx C Px) 12, EG

QED
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38. 1. (�x)(Px e Qx)

2. (�x)-(Rx w -Px)

3. -(Rx w -Px) 2, UI

4. -Rx C --Px 3, DM

5. -Rx 4, simp

6. -Rx C Px 4, DN

7. Px C -Rx 6, com

8. Px 7, simp

9. Px e Qx 1, UI

10. Qx 9, 8, MP

11. Qx C -Rx 10, 5, Conj

12. (�x)(Qx C -Rx) 11, EG

QED

39. 1. (�x)[Ax e (Bx w Cx)]

2. (�x)-(Bx w -Ax) / (�x)Cx

3. -(Ba w -Aa) 2, EI

4. -Ba C --Aa 3, DM

5. --Aa C -Ba 4, Com

6. --Aa 5, Simp

7. Aa 6, DN

8. Aa e (Ba w Ca) 1, UI

9. Ba w Ca 8, 7, MP

10. -Ba 4, Simp

11. Ca 9, 10, DS

12. (�x)Cx 11, EG

QED

40. 1. (�x)[(Sx w Tx) C Ux]

2. (�x)(Ux e -Sx)

3. (Sa w Ta) C Ua 1, EI

4. Ua e -Sa 2, UI

5. Ua C (Sa w Ta) 3, com

6. Ua 5, simp

7. -Sa 4, 6 MP

8. (�x)-Sx 7, EG

9. Ua C (Sa w Ta) 3, com

10. (Ua C Sa) w (Ua C Ta) 9, dist

11. -Sa w -Ua 7, add

12. -Ua w -Sa 11, com

13. -(Ua C Sa) 12, DM

14. Ua C Ta 10, 13 DS

15. (�y)(Uy C Ty) 14, EG

16. (�x)-Sx C (�y)(Uy C Ty) 8, 15, conj

QED
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41. 1. (�x)(Sx w Tx)

2. (�x)-(Ux e Sx)

3. Sx w Tx 1, UI

4. -(Ux e Sx) 2, UI

5. -(-Ux w Sx) 4, impl

6. --Ux C -Sx 5, DM

7. -Sx C --Ux 6, com

8. -Sx 7, simp

9. Tx 3, 8 DS

10. (�x)Tx 9, UG

11. -(Ua e Sa) 2, UI

12. -(-Ua w Sa) 11, impl

13. --Ua C -Sa 12, DM

14. Ua C -Sa 13, Dn

15. Ua 14, simp

16. (�y)Uy 15, EG

17. (�x)Tx C (�y)Uy 10, 16 conj

QED

42. 1. (�x)(Hx e -Jx)

2. (�x)(Ix e Jx)

3. Ha C Ib

4. Ha e -Ja 1, UI

5. Ia e Ja 2, UI

6. -Ja e -Ia 5, cont

7. Ha e -Ia 4, 6 HS

8. Ha 3, simp

9. -Ia 7, 8 MP

10. Hb e -Jb 1, UI

11. Ib e Jb 2, UI

12. -Jb e -Ib 11, cont

13. Hb e -Ib 10, 12 HS

14. Ib C Ha 3, com

15. Ib 14, simp

16. --Ib 15, DN

17. -Hb 13, 16 MT

18. -Ia C -Hb 9, 17 conj

19. -(Ia w Hb) 18, DM

QED

43. 1. (�x)Ax

2. (�x)(Ax e Bx)

3. (�x)-(Ex e Bx) / (�x)Cx

4. Aa 1, EI

5. Aa e Ba 2, UI

6. Ba 5, 4, MP

7. -(Ea e Ba) 3, UI

8. -(-Ea w Ba) 7, Impl

9. --Ea C -Ba 8, DM

10. -Ba C --Ea 9, Com

11. -Ba 10, Simp

12. Ba w (�x)Cx 6, Add

13. (�x)Cx 12, 11, DS

QED
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44. 1. (�x)(-Tx C Ux) / (�x)Wx

2. (�x)(Tx e Vx)

3. (�x)(Ux C -Vx)

4. Ua C -Va 3, EI

5. Ta e Va 2, UI

6. Ua 4, simp

7. -Va C Ua 4, com

8. -Va 7, simp

9. -Ta 5, 8 MT

10. -Ta C Ua 9, 6, conj

11. (�x)(-Tx C Ux) 10, EG

12. [(�x)(-Tx C Ux) e (�x)Wx] C [(�x)Wx e (�x)(-Tx C Ux)] 1, equiv

13. (�x)(-Tx C Ux) e (�x)Wx 12, simp

14. (�x)Wx 13, 11 MP

QED

45. 1. (�x)(Jx / Kx) e (�x)(Ix C Lx)

2. (�x)[(Ix C Jx) e Kx]

3. (�x)-(Ix e Kx)

4. -(Ia e Ka) 3, EI

5. (Ia C Ja) e Ka 2, UI

6. -(-Ia w Ka) 4, impl

7. --Ia C -Ka 6, DM

8. Ia C -Ka 7, DN

9. Ia 8, simp

10. Ia e (Ja e Ka) 5, exp

11. Ja e Ka 9, 10 MP

12. -Ka C Ia 8, com

13. -Ka 12, simp

14. -Ka w Ja 13, add

15. Ka e Ja 14, impl

16. (Ja e Ka) C (Ka e Ja) 11, 15 conj

17. Ja / Ka 16, equiv

18. (�x)(Jx / Kx) 17, EG

19. (�x)(Ix C Lx) 1, 18 MP

20. Ix C Lx 19, UI

21. Lx C Ix 20, com

22. Lx 21, simp

23. (�y)Ly 22, UG

QED

46. 1. (�x)Kx e (�x)(Lx e Mx)

2. (�x)-(Kx e -Lx)

3. (�x)-Mx / (�x)-Lx

4. -(Ka e -La) 2, UI

5. -(-Ka w -La) 4, impl

6. --(Ka C La) 5, DM

7. Ka C La 6, DN

8. Ka 7, Simp

9. (�x)Kx 8, EG

10. (�x)(Lx e Mx) 1, 9, MP

11. Lx e Mx 10, UI

12. -Mx 3, UI

13. -Lx 11, 12, MT

14. (�x)-Lx 13, EI

QED   

47. 1. (�x)[Ix w (Hx w Jx)]
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2. (�x)-(-Ix e Jx)

3. (�x)-(Hx C Kx) / (�x)-Kx

4. Ia w (Ha w Ja) 1, EI

5. -(-Ia e Ja) 2, UI

6. -(--Ia w Ja) 5, Impl

7. ---Ia C -Ja 6, DM

8. -Ia C -Ja 7, DN

9. -Ia 8, Simp

10. Ha w Ja 4, 9, DS

11. -Ja C -Ia 8, Com

12. -Ja 11, Simp

13. Ja w Ha 10, Com

14. Ha 13, 12, DS

15. -(Ha C Ka) 3, UI

16. -Ha w -Ka 15, DM

17. --Ha 14, DN

18. -Ka 16, 17, DS

19. (�x)-Kx 18, EG

QED 
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Exercises 3.4

1. 1. (�x)Ax e (�x)Bx

2. (�x)-Bx

3. -(�x)Bx 2, QE

4. -(�x)Ax 1, 3 MT

5. (�x)-Ax 4, QE

6. -Ab 5, EI

QED

2. 1. (�x)[Qx C (Rx C -Sx)]

2. Qa C (Ra C -Sa) 1, EI

3. (Qa C Ra) C -Sa 2, assoc

4. -Sa C (Qa C Ra) 3, com

5. -Sa 4, simp

6. (�y)-Sy 5, EG

7. -(�y)Sy 6, QE

QED

3. 1. (�x)(Jx C Kx) w -(�x)Lx

2. -Ja

3. -Ja w -Ka 2, add

4. -(Ja C Ka) 3, DM

5. (�x)-(Jx C Kx) 4, EG

6. -(�x)(Jx C Kx) 5, QE

7. -(�x)Lx 1,6 DS

8. (�x)-Lx 7, QE

QED

4. 1. (�x)-Ix e (�x)(Jx w Kx)

2. -(�x)Ix C -Jb

3. -(�x)Ix 2, simp

4. (�x)-Ix 3, QE

5. (�x)(Jx w Kx) 1, 4 MP

6. Jb w Kb 5, UI

7. -Jb C -(�x)Ix 2, com

8. -Jb 7, simp

9. Kb 6, 8 DS

QED

5. 1. (�x)Cx w (�x)Dx

2. (�x)-(Cx w Ex)

3. -(Cx w Ex) 2, UI

4. -Cx C -Ex 3, DM

5. -Cx 4, simp

6. (�x)-Cx 5, UG

7. -(�x)Cx 6, QE

8. (�x)Dx 1, 7 DS

QED
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6. 1. -(�x)(Rx w Sx) w (�x)(Tx e -Rx)

2. Ra

3. (�x)(Rx w Sx) e (�x)(Tx e -Rx) 1, impl

4. Ra w Sa 2, add

5. (�x)(Rx w Sx) 4, EG

6. (�x)(Tx e -Rx) 3, 5 MP

7. Ta e -Ra 6, UI

8. --Ra 2, DN

9. -Ta 7, 8 MT

10. (�x)-Tx 9, EG

11. -(�x)Tx 10, QE

QED

7. 1. (�x)-Fx w (�x)(Gx C Hx)

2. (�x)[(Fx C Gx) w (Fx C Hx)]

3. -(�x)Fx w (�x)(Gx C Hx) 1, QE

4. (�x)Fx e (�x)(Gx C Hx) 3, impl

5. (Fx C Gx) w (Fx C Hx) 2, UI

6. Fx C (Gx w Hx) 5, dist

7. Fx 6, simp

8. (�x)Fx 7, UG

9. (�x)(Gx C Hx) 4, 8 MP

10. Ga C Ha 9, UI

11. (�y)(Gy C Hy) 10, EG

QED

8. 1. -(�x)(Qx e Rx)

2. (�x)(-Rx e Tx) / -(�x)-Tx

3. (�x)-(Qx e Rx) 1, QE

4. -(Qa e Ra) 3, EI

5. -(-Qa w Ra) 4, Impl

6. --Qa C -Ra 5, DM

7. -Ra C --Qa 6, Com

8. -Ra 7, Simp

9. -Ra e Ta 2, UI

10. Ta 9, 8, MP

11. (�x)Tx 10, EG

12. -(�x)-Tx 11, QE

QED

9. 1. (�x)[Lx w (Mx C -Nx)]

2. -(�x)Lx / -(�x)(Lx w Nx)

3. (�x)-Lx 2, QE

4. Lx w (Mx C -Nx) 1, UI

5. -Lx 3, UI

6. Mx C -Nx 4, 5, DS

7. -Nx C Mx 6, Com

8. -Nx 7, Simp

9. -Lx C-Nx 5, Conj

10. -(Lx w Nx) 9, DM

11. (�x)-(Lx w Nx) 10, UG

` 12. -(�x)(Lx w Nx) 11, QE

QED
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10. 1. (�x)[(Tx C Ux) e Vx]

2. -(�x)-Tx

3. (�x)Tx 2, QE

4. Ta 3, EI

5. (Ta C Ua) e Va 1, UI

6. Ta e (Ua e Va) 5, exp

7. Ua e Va 6, 4, MP

8. -Ua w Va 7, impl

9. -Ua w --Va 8, DN

10. -(Ua C -Va) 9, DM

11. (�x)-(Ux C -Vx) 10, EG

12. -(�x)(Ux C -Vx) 11, QE

QED

11. 1. (�x)(Ax w Bx)

2. (�x)(Ax e Dx)

3. -(�x)(Bx C -Cx)

4. (�x)-(Bx C -Cx) 3, QE

5. -(Ba C -Ca) 4, EI

6. Aa w Ba      1, UI

7. Aa e Da 2, UI

8. -Ba w --Ca 5, DM

9. -Ba w Ca 8, DN

10. Ba e Ca 9, impl

11. (Aa e Da) C (Ba e Ca) 7, 10 conj

12. Da w Ca 11, 6, CD

13. (�y)(Dy w Cy) 12, EG

QED

12. 1. -(�x)[Kx e (Lx e Mx)]

2. (�x)[(Nx C Ox) / Mx]

3. (�x)-[Kx e (Lx e Mx)] 1, QE

4. -[Ka e (La e Ma)] 3, EI

5. -[(Ka C La) e Ma] 4, exp

6. -[-(Ka C La) w Ma] 5, impl

7. --(Ka C La) C -Ma 6, DM

8. -Ma C --(Ka C La) 7, com

9. -Ma 8, simp

10. (Na C Oa) / Ma 2, UI

11. [(Na C Oa) e Ma] C [Ma e (Na C Oa)] 10, equiv

12. (Na C Oa) e Ma 11, simp

13. -(Na C Oa) 9, 12 MT

14. (�x)-(Nx C Ox) 13, EG

15. -(�x)(Nx C Ox) 14, QE

QED
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13. 1. -(�x)(Ox / Px)

2. Pa

3. (�x)-(Ox /Px) 1, QE

4. -(Oa / Pa) 3, EI

5. -[(Oa e Pa) C (Pa e Oa)] 4, equiv

6. -(Oa e Pa) w -(Pa e Oa) 5, DM

7. (Oa e Pa) e -(Pa e Oa) 6, impl

8. Pa w -Oa 2, add

9. -Oa w Pa 8, com

10. Oa e Pa 9, impl

11. -(Pa e Oa) 7, 10 MP

12. -(-Pa w Oa) 11, impl

13. --Pa C -Oa 12, DM

14. -Oa C --Pa 13, com

15. -Oa 14, simp

16. (�x)-Ox 15, EG

17. -(�x)Ox 16, QE

QED

14. 1. -(�x)[Ex C (Fx w Gx)]

2. (�x)[Hx e (Ex C Gx)]

3. (�x)[-Hx e (Ix w Jx)]

4. -Ha e (Ia w Ja) 3, EI

5. (�x)-[Ex C (Fx w Gx)] 1, QE

6. -[Ea C (Fa w Ga)] 5, UI

7. Ha e (Ea C Ga) 2, UI

8. -Ea w -(Fa w Ga) 6, DM

9. -Ea w (-Fa C -Ga) 8, DM

10. (-Ea w -Fa) C (-Ea w -Ga) 9, dist

11. (-Ea w -Ga) C (-Ea w -Fa) 10, com

12. -Ea w -Ga 11, simp

13. -(Ea C Ga) 12, DM

14. -Ha 7, 13 MT

15. Ia w Ja 4, 14 MP

16. --Ia w Ja 15, DN

17. -Ia e Ja 16, impl

18. (�x)(-Ix e Jx) 17, EG

QED

15. 1. -(�x)[Fx C (Gx C Hx)]

2. -(�x)(Ix C -Fx) / (�x)[Ix e (-Gx w -Hx)]

3. (�x)-[Fx C (Gx C Hx)] 1, QE

4. (�x)-(Ix C -Fx) 2, QE

5. -[Fx C (Gx C Hx) 3, UI

6. -Fx w -(Gx C Hx) 5, DM

7. Fx e -(Gx C Hx) 6, Impl

8. -(Ix C -Fx) 4, UI

9. -Ix w --Fx 8, DM

10. Ix e --Fx 9, Impl

11. Ix e Fx 10, DN

12. Ix e -(Gx C Hx) 11, 7, HS

13. Ix e (-Gx w -Hx) 12, DM

14. (�x)[Ix e (-Gx w -Hx)] 13, UG

QED

16. 1. -(�x)[(Jx C Kx) C Lx]

2. (�x)(Mx e Jx)
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3. (�x)(-Nx C Mx)

4. (�x)-[(Jx C Kx) C Lx] 1, QE

5. -[(Ja C Ka) C La] 4, EI

6. Ma e Ja 2, UI

7. -Na C Ma 3, UI

8. Ma C -Na 7, com

9. Ma 8, simp

10. Ja 6, 9 MP

11. -(Ja C Ka) w -La 5, DM

12. (-Ja w -Ka) w -La 11, DM

13. -Ja w (-Ka w -La) 12, assoc

14. Ja e (-Ka w -La) 13, impl

15. -Ka w -La 10, 14 MP

16. -(Ka C La) 15, DM

17. (�x)-(Kx C Lx) 16, EG

18. -(�x)(Kx C Lx) 17, QE

QED

17. 1. (�x)[(Ax w Cx) e Bx]

2. -(�x)(Bx w Ex)

3. (�x)(Dx e Ex) e (�x)(Ax w Cx)

4. (�x)-(Bx w Ex) 2, QE

5. (Aa w Ca) e Ba 1, EI

6. -(Ba w Ea) 4, UI

7. -Ba C -Ea 6, DM

8. -Ba 7, simp

9. -(Aa w Ca) 5, 8 MT

10. (�x)-(Ax w Cx) 9, EG

11. -(�x)(Ax w Cx) 10, QE

12. -(�x)(Dx e Ex) 3, 11 MT

13. (�x)-(Dx e Ex) 12, QE

14. -(Da e Ea) 13, UI

15. -(-Da w Ea) 14, impl

16. --Da C -Ea 15, DM

17. Da C -Ea 16, DN

18. Da 17, simp

19. (�y)Dy 18, EG

QED
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18. 1. (�x)(Nx w -Ox)

2. -(�x)(Px C Qx) C -(�x)(Nx w -Qx)

3. -(�x)(Nx w- Qx) C -(�x)(Px C Qx) 2, com

4. -(�x)(Nx w -Qx) 3, simp

5. (�x)-(Nx w -Qx) 4, QE

6. Na w -Oa 1, EI

7. -(Na w -Qa) 5, UI

8. -Na C --Qa 7, DM

9. -Na 8, simp

10. -Oa 6, 9 DS

11. -(�x)(Px C Qx) 2, simp

12. (�x)-(Px C Qx) 11, QE

13. -(Pb C Qb) 12, EI

14. -Pb w -Qb 13, DM

15. -(Nb w -Qb) 5, UI

16. -Nb C --Qb 15, DM

17. --Qb C -Nb 16, com

18. --Qb 17, simp

19. -Qb w -Pb 14, com

20. -Pb 18, 19 DS

21. (�x)-Px 20, EG

22. -(�x)Px 21, QE

23. (�x)-Ox 10, EG

24. -(�x)Ox 23, QE

25. -(�x)Px C -(�x)Ox 22, 24 conj

26. -[(�x)Px w (�x)Ox] 25, DM

QED

19. 1. (�x)(Mx C -Nx) e (�x)(Ox w Px)

2. -(�x)(-Nx e Ox)

3. -(�x)Px

4. (�x)-(-Nx e Ox) 2, QE

5. -(-Na e Oa) 4, EI

6. -(--Na w Oa) 5, DM

7. -(Na w Oa) 6, DN

8. -Na C -Oa 7, DM

9. -Oa C -Na 8, com

10. -Oa 9, simp

11. (�x)-Px 3, QE

12. -Pa 11, UI

13. -Oa C -Pa 10, 12 conj

14. -(Oa w Pa) 13, DM

15. (�x)-(Ox w Px) 14, EG

16. -(�x)(Ox w Px) 15, QE

17. -(�x)(Mx C -Nx) 1, 16 MT

18. (�x)-(Mx C -Nx) 17, QE

19. -(Ma C -Na) 18, UI

20. -Ma w --Na 20, DM

21. --Na w -Ma 20, Com

22. Na w -Ma 21, DN

23. -Na 8, Simp

24. (�y)-Ny 23, EG

25. -(�y)Ny 24, QE

QED
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20. 1. (�x)[Ax C (Bx w Cx)] e (�x)Dx

2. -(�x)(Ax e Dx)

3. (�x)-(Ax e Dx) 2, QE

4. -(Aa e Da) 3, EI

5. -(-Aa w Da) 4, impl

6. --Aa C -Da 5, DM

7. -Da C --Aa 6, com

8. -Da 7, simp

9. (�x)-Dx 8, EG

10. -(�x)Dx 9, QE

11. -(�x)[Ax C (Bx w Cx)]1, 10 MT

12. (�x)-[Ax C (Bx w Cx)]11, QE

13. -[Aa C (Ba w Ca)] 12, UI

14. -Aa w -(Ba w Ca) 13, DM

15. -Aa w (-Ba C -Ca) 14, DM

16. --Aa 6, simp

17. -Ba C -Ca 15, 16 DS

18. -Ca C -Ba 17, com

19. -Ca 18, simp

20. (�x)-Cx 19, EG

21. -(�x)Cx 20, QE

QED

21. 1. (�x)(Ex C Fx) w -(�x)[Gx e (Hx e Ix)]

2. -(�x)(Jx e Ex)

3. (�x)-(Jx e Ex) 2, QE

4. -(Ja e Ea) 3, EI

5. -(-Ja w Ea) 4, impl

6. --Ja C -Ea 5, DM

7. -Ea C --Ja 6, com

8. -Ea 7, simp

9. -Ea w -Fa 8, add

10. -(Ea C Fa) 9, DM

11. (�x)-(Ex C Fx) 10, EG

12. -(�x)(Ex C Fx) 11, QE

13. -(�x)[Gx e (Hx e Ix)] 1, 12 DS

14. (�x)-[Gx e (Hx e Ix)] 13, QE

15. -[Ga e (Ha e Ia)] 14, EI

16. -[(Ga C Ha) e Ia] 14, exp

17. -[-(Ga C Ha) w Ia] 16, impl

18. --(Ga C Ha) C -Ia 17, DM

19. -Ia C --(Ga C Ha) 18, com

20. -Ia 19, simp

21. (�y)-Iy 20, EG

22. -(�y)Iy 21, QE

QED
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22. 1.-(�x)(Jx C -Kx)

2. -(�x)[Kx C (-Jx w -Lx)] / (�x)(Jx / Kx)

3. (�x)-(Jx C -Kx) 1, QE

4. -(Jx C -Kx) 3, UI

5. -Jx w --Kx 4, DM

6. Jx e --Kx 5, Impl

7. Jx e Kx 6, DN

8. (�x)-[Kx C (-Jx w -Lx)] 2, QE

9. -[Kx C (-Jx w -Lx)] 8, UI

10. -Kx w -(-Jx w -Lx) 9, DM

11. -Kx w (--Jx C --Lx) 10, DM

12. (-Kx w --Jx) C (-Kx w --Lx) 11, Dist

13. -Kx w --Jx 12, Simp

14. -Kx w Jx 13, DN

15. Kx e Jx 14, Impl

16. (Jx e Kx) C (Kx e Jx) 7, 15, Conj

17. Jx / Kx 16, equiv

18. (�x)(Jx /Kx) 17, UG

QED

23. 1. -[(�x)(Ax w Bx) C (�x)(Cx e Dx)]

2. -(�x)(-Ax w Ex)

3. -(�x)(Ax w Bx) w -(�x)(Cx e Dx) 1, DM

4. (�x)(Ax w Bx) e -(�x)(Cx e Dx) 3, impl

5. (�x)-(-Ax w Ex) 2, QE

6. -(-Aa w Ea) 5, EI

7. --Aa C -Ea 6, DM

8. Aa C -Ea 7, DN

9. Aa 8, simp

10. Aa w Ba 9, add

11. (�x)(Ax w Bx) 10, EG

12. -(�x)(Cx e Dx) 4, 11 MP

13. (�x)-(Cx e Dx) 12, QE

14. -(Cb e Db) 13, UI

15. -(-Cb w Db) 14, impl

16. --Cb C -Db 15, DM

17. --Cb 16, Simp

18. Cb 17, DN

19. (�x)Cx 18, EG

QED
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24. 1. (�x)(Fx e Hx) w -(�x)(Gx / Ix)

2. (�x)[Fx C (-Hx C Ix)]

3. Fa C (-Ha C Ia) 2, EI

4. (Fa C -Ha) C Ia 3, assoc

5. Fa C -Ha 4, simp

6. --Fa C -Ha 5, DN

7. -(-Fa w Ha) 6, DM

8. -(Fa e Ha) 7, impl

9. (�x)-(Fx e Hx) 8, EG

10. -(�x)(Fx e Hx) 9, QE

11. -(�x)(Gx / Ix) 1, 10 DS

12. (�x)-(Gx / Ix) 11, QE

13. -(Ga / Ia) 12, UI

14. -[(Ga C Ia) w (-Ga C -Ia)] 13, equiv

15. -(Ga C Ia) C -(-Ga C -Ia) 14, DM

16. -(Ga C Ia) 15, simp

17. -Ga w -Ia 16, DM

18. -Ia w -Ga 17, com

19. Ia C (Fa C -Ha) 4, com

20. Ia 19, simp

21. --Ia 20, dn

22. -Ga 18, 21 DS

23. (�x)-Gx 22, EG

24. -(�x)Gx 23, QE

QED

25. 1. -(�x)[Px C (Qx C Rx)]

2. -(�x)[-Rx w (Sx CTx)]

3. (�x)(Px C Qx) w (�x)(Tx e Rx)

4. (�x)-[Px C (Qx C Rx)] 1, QE

5. (�x)-[-Rx w (Sx CTx)] 2, QE

6. -[-Ra w (Sa C Ta)] 5, EI

7. -[Pa C (Qa C Ra)] 4, UI

8. -Pa w -(Qa C Ra) 7, DM

9. -Pa w (-Qa w -Ra) 8, DM

10. Pa e (-Qa w -Ra) 9, impl

11. Pa e (Qa e -Ra) 10, impl

12. (Pa C Qa) e -Ra 11, exp

13. --Ra C -(Sa C Ta) 6, DM

14. --Ra 13, simp

15. -(Pa C Qa) 12, 14 MT

16. (�x)-(Px C Qx) 15, EG

17. -(�x)(Px C Qx) 16, QE

18. (�x)(Tx e Rx) 3, 17 DS

19. (�x)(-Tx w Rx) 18, Impl

20. (�x)(-Tx w --Rx) 19, DN

21. (�x)-(Tx C -Rx) 20, DM

22. -(�x)(Tx C -Rx) 21, QE

QED
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Exercises 3.5

1. 1. (�x)(Dx w Ex)

2. (�x)(Fx e -Ex)

*3. -Dx ACP

*4. Dx w Ex 1, UI

*5. Fx e -Ex 2, UI

*6. Ex 3, 4 DS

*7. --Ex 6, DN

*8. -Fx 5,7 MT

9. -Dx e -Fx 3-8 CP

10. (�x)(-Da e -Fa) 9, UG

QED

2. 1. (�x)(Ax e Bx)

2. (�x)-(Bx C -Cx)

*3. Ax ACP

*4. Ax e Bx 1, UI

*5. -(Bx C -Cx) 2, UI

*6. Bx 3,4 MP

*7. -Bx w --Cx 5, DM

*8. --Bx 6, DN

*9. --Cx 7,8 DS

*10. Cx 9, DN

11. Ax e Cx 3-10 CP

12. (�x)(Ax e Cx) 11, UG

QED

3. 1. (�x)(Gx e Hx)

2. -(�x)(Ix C -Gx)

3. (�x)(-Hx e Ix)

*4. (�x)-Hx AIP

*5. -Ha 4, EI

*6. Ga e Ha 1, UI

*7. -Ga 6, 5, MT

*8. (�x)-(Ix C -Gx) 2, QE

*9. -(Ia C -Ga) 8, UI

*10. -Ia w --Ga 9, DM

*11. --Ga w -Ia 10, Com

*12. Ga w -Ia 11, DN

*13. -Ia 12, 7, DS

*14. -Ha e Ia 3, UI

*15. --Ha 14, 13, MT

*16. -Ha C --Ha 5, 15, Conj

17. -(�x)-Hx 4-16, IP

18. (�x)Hx 17, QE

QED
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4. 1. (�x)[Ax e (Bx e Cx)]

2. -(�x)(Bx e Dx)

*3. (�x)Ax ACP

*4. (�x)-(Bx e Dx) 2, QE

*5. -(Ba e Da) 4, EI

*6. -(-Ba w Da) 5, impl

*7. --Ba C -Da 6, DM

*8. Ba C -Da 7, DN

*9. Ba 8, simp

*10. Aa 3, UI

*11. Aa e (Ba e Ca) 1, UI

*12. Ba e Ca 10, 11 MP

*13. Ca 9, 12 MP

*14. -Da C Ba 8, Com

*15. -Da 14, Simp

*16. Ca C -Da 13, 15, Conj

*17. (�x)(Cx C -Dx) 16, EG

18. (�x)Ax e (�x)(Cx C -Dx) 3-17 CP

QED

5. 1. (�x)(Rx e Ux)

2. -(�x)(Ux C Sx)

*3. (�x)Rx ACP

*4. Ra ACP

*5. (�x)-(Ux C Sx) 2, QE

*6. -(Ua C Sa) 5, UI

*7. -Ua w -Sa 6, DM

*8. Ra e Ua 1, UI

*9. Ua 8, 4, MP

*10. --Ua 9, DN

*11. -Sa 7, 10, DS

*12. (�x)-Sx 11, EG

13. (�x)Rx e (�x)-Sx 3-12 CP

QED

6. 1. (�x)[Ax e (Dx w Ex)]

2. (�x)[(-Dx e Ex) e (-Cx e Bx)]

*3. Ax ACP

*4. Ax e (Dx w Ex) 1, UI

*5. Dx w Ex 3, 4 MP

*6. --Dx w Ex 5, DN

*7. -Dx e Ex 6, impl

*8. (-Dx e Ex) e (-Cx e Bx) 2, UI

*9. -Cx e Bx 7, 8 MP

*10. -Bx e --Cx 9, cont

*11. -Bx e Cx 10, DN

*12. --Bx w Cx 11, impl

*13. Bx w Cx 12, DN

14. Ax e (Bx w Cx) 3-13 CP

15. (�x)[Ax e (Bx w Cx)] 14, UG

QED
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7. 1. (�x)[-Nx w (Qx C Rx)]

2. (�x)(Px / Qx)

*3. (�x)Nx ACP

*4. Na 3, EI

*5. -Na w (Qa C Ra) 1, UI

*6. --Na 4, DN

*7. Qa C Ra 5, 6 DS

*8. Qa 7, simp

*9. Pa / Qa 2, UI

*10. (Pa e Qa) C (Qa e Pa) 9, equiv

*11. (Qa e Pa) C (Pa e Qa) 10, com

*12. Qa e Pa 11, simp

*13. Pa 8, 12 MP

*14. (�x)Px 13, EG

15. (�x)Nx e (�x)Px 3-14, CP

QED

8. 1. (�x)(Px e Qx)

2. -(�x)[(Px C Rx) C Qx]

3. (�x)Rx / -(�x)Px

4. Ra 3, EI

*5. (�x)Px AIP

*6. Pa 5, UI

*7. Pa e Qa 1, UI

*8. Qa 7, 6, MP

*9. Pa C Ra 8, 4, Conj

*10. (Pa C Ra) C Qa 9, 8, Conj

*11. (�x)[(Pa C Ra) C Qa] 10, EG

*12. (�x)[(Pa C Ra) C Qa] C -(�x)[(Pa C Ra) C Qa] 11, 2, Conj

13. -(�x)Px 5-12, IP

QED

9. 1. (�x)(Ox e Nx)

2. (�x)(Nx e Px)

3. -(�x)(Px w Qx)

*4. Ox AIP

*5. Ox e Nx 1, UI

*6. Nx e Px 2, UI

*7. Ox e Px 5, 6 HS

*8. Px 4, 7 MP

*9. (�x)-(Px w Qx) 3, QE

*10. -(Px w Qx) 8, UI

*11. -Px C -Qx 9, DM

*12. -Px 11, simp

*13. Px C -Px 8, 12 conj

14. -Ox 4-13 IP

15. (�x)-Ox 14, UG

QED
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10. 1. (�x)[(Fx w Gx) e Ix]

2. (�x)[(Ix C Ex) e Gx]

*3. Ex C Fx ACP

*4. (Fx w Hx) e Ix 1, UI

*5. Fx C Ex 3, com

*6. Fx 5, simp

*7. Fx w Hx 6, add

*8. Ix 4, 7 MP

*9. (Ix C Ex) e Gx 2, UI

*10. Ex 3, simp

*11. Ix C Ex 8, 10 conj

*12. Gx 9, 11 MP

13. (Ex C Fx) e Gx 3-12 CP

14. Ex e (Fx e Gx) 13, exp

15. (�x)[Ex e (Fx e Gx)] 14, UG

QED

11. 1. (�x)[Sx e (-Tx w -Rx)]

2. (�x)(Ux e Sx) / (�x)(Rx C Tx) e (�x)(-Sx C -Ux)

*3. (�x)(Rx C Tx) ACP

*4. Ra C Ta 3, EI

*5. Ta C Ra 4, Com

*6. --(Ta C Ra) 5, DN

*7. -(-Ta w -Ra) 6, DM

*8. Sa e (-Ta w -Ra) 1, UI

*9. -Sa 8, 7, MT

*10. Ua e Sa 2, UI

*11. -Ua 10, 9, MT

*12. -Sa C -Ua 9, 11, Conj

 *13. (�x)(-Sx C -Ux) 12, EG

14. (�x)(Rx C Tx) e (�x)(-Sx C -Ux) 3-13, CP

QED

12. 1. (�x)(Ex / Hx)

2. (�x)(Hx e -Fx) 

*3. (�x)Ex ACP

*4. Ex 3, UI

*5. Ex / Hx 1, UI

*6. (Ex e Hx) C (Hx e -Fx) 5, equiv

*7. Ex e Hx 6, simp

*8. Hx e -Fa 2, UI

*9. Ex e -Fx 7, 8, HS

*10. -Fx 9, 4, MP

*11. (�x)-Fx 10, EG

*12. -(�x)Fx 11, QE

13. (�x)Ex e -(�x)Fx 3-11, CP

QED
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13. 1. (�x)(Cx e Ax)

2. (�x)-Bx e (�x)Cx

*3. -(Aa w Ba) AIP

*4. -Aa C -Ba 3, DM

*5. -Aa 4, simp

*6. Ca e Aa 1, UI

*7. -Ca 5,6 MT

*8. -Ba C -Aa 4, com

*9. -Ba 8, simp

*10. (�x)-Bx 9, EG

*11. (�x)Cx 2, 10 MP

*12. Ca 11, UI

*13. -Ca C Ca 7, 12 conj

14. --(Aa w Ba) 3-13 IP

15. Aa w Ba 14, DN

16. (�x)(Ax w Bx) 17, EG

QED

14. 1. (�x)[Jx e (-Kx e -Lx)

2. (�x)(Jx C -Kx) / -(�x)Lx

3. Ja C -Ka 2, EI

4. Ja e (-Ka e -La) 1, UI

5. Ja 3, Simp

6. -Ka e -La 4, 5, MP

7. -Ka C Ja 3, Com

8. -Ka 7, Simp

9. -La 6, 8, MP

10. (�x)-Lx 9, EG

11. -(�x)Lx 10, QE

QED

15. 1. (�x)[Jx e (Mx C Lx)]

2. (�x)[(-Kx w Nx) C (-Kx w Lx)] / (�x)[(Jx w Kx) e Lx]

*3. Jx w Kx ACP

*4. Jx e (Mx C Lx) 1, UI

*5. (-Kx w Nx) C (-Kx w Lx) 7, 8 HS

*6. -Kx w (Nx C Lx) 5, Dist

*7. Kx e (Nx C Lx) 6, Impl

*8. [Jx e (Mx C Lx)] C [Kx e (Nx C Lx)] 4, 7, Conj

*9. (Mx C Lx) w (Nx C Lx) 8, 3, CD

*10. (Lx C Mx) w (Nx C Lx) 9, Com

*11. (Lx C Mx) w (Lx C Nx) 10, Com

*12. Lx C (Mx w Nx) 11, Dist

*13. Lx 12, Simp

14. (Jx w Kx) e Lx 3-13, CP

15. (�x)[(Jx w Kx) e Lx] 14, UG

QED
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16. 1. (�x)(Ix e Kx)

2. (�x)(Lx e Jx)

3. -(�x)(-Kx e Jx)

*4. (�x)[Ix w (Lx C Mx)] AIP

*5. Ia w (La C Ma) 4, EI

*6. Ia e Ka 1, UI

*7. La e Ja 2, UI

*8. (Ia w La) C (Ia w Ma) 5, dist

*9. Ia w La 8, simp

*10. (Ia e Ka) C (La e Ja) 6, 7 conj

*11. Ka w Ja 10, 9 CD

*12. (�x) -(-Kx e Jx) 3, QE

*13. -(-Ka e Ja) 12, UI

*14. -(--Ka w Ja) 13, impl

*15. -(Ka w Ja) 14, DN

*16. (Ka w Ja) C -(Ka w Ja) 11, 15 conj

17. -(�x)[Ix w (Lx C Mx)] 4-16, IP

QED

17. 1. (�x)(Px e Ox)

2. (�x)(Ox / Qx)

*3. -(-Px w Qx) AIP

*4. --Px C -Qx 3, DM

*5. Px C -Qx 4, DN

*6. Px 5, simp

*7. Px e Ox 1, UI

*8. Ox 6, 7 MP

*9. Ox / Qx 2, UI

*10. (Ox e Qx) C (Qx e Ox) 9, equiv

*11. Ox e Qx 10, simp

*12. Qx 8, 11 MP

*13. -Qx C Px 5, com

*14. -Qx 13, simp

*15. Qx C -Qx 12, 14 conj

16. --(-Px w Qx) 3-15 IP

17. -Px w Qx 16, DN

18. (�x)(-Px w Qx) 17, UI

QED
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18. 1. (�x)[Fx e (Dx C -Ex)]

2. (�x)(Fx e Hx)

3. (�x)Fx / -(�x)(Dx e Ex) w (�x)[Fx C (Gx C Hx)]

4. Fa 3, EI

5. Fa e Ha 2, UI

6. Ha 5, 4, MP

7. Fa e (Da C -Ea) 1, UI

8. Da C -Ea 7, 4, MP

9. -Ea C Da 8, Com

10. -Ea 9, Simp

*11. (�x)(Dx e Ex) AIP

*12. Da e Ea 3, UI

*13. Da 8, Simp

*14. Ea 4, 5, MP

*15. Ea C -Ea 14, 10, Conj

16. -(�x)(Dx e Ex) 11-15, IP

17. -(�x)(Dx e Ex) w (�x)[Fx C (Gx C Hx)] 16, Add

QED

19. 1. (�x)(Sx w Tx)

2. (�x)(Ux e -Vx)

3. (�x)Tx e (�x)Ux

*4. (�x)(-Sx C Vx) AIP

*5. Sa w Ta 1, EI

*6. -Sa C Va 4, UI

*7. -Sa 6, simp

*8. Ta 5, 7 DS

*9. Ub e -Vb 2, EI

*10. -Sb C Vb 4, UI

*11. Vb C -Sb 10, com

*12. Vb 11, simp

*13. --Vb 12, DN

*14. -Ub 9, 13 MT

*15. (�x)-Ux 14, EG

*16. -(�x)Ux 15, QE

*17. -(�x)Tx 3, 16 MT

*18. (�x)Tx 8, EG

*19. (�x)Tx C -(�x)Tx 18, 17, Conj

20. -(�x)(-Sx C Vx) 4-19, IP

QED
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20. 1. (�x)[Ax e (Cx C Dx)]

2. (�x)(Bx C -Cx) / -(�x)(Ax / Bx)

3. Ba C -Ca 2, EI

4. -Ca C Ba 3, Com

5. -Ca 4, Simp

6. -Ca w -Da 5, Add

7. -(Ca C Da) 6, DM

8. Aa e (Ca C Da) 1, UI

9. -Aa 8, 7, Mt

*10. (�x)(Ax / Bx) AIP

*11. Aa / Ba 10, UI

*12. (Aa e Ba) C (Ba e Aa) 11, Equiv

*13. (Ba e Aa) C (Aa e Ba) 12, Com

*14. Ba e Aa 13, Simp

*15. Ba 3, Simp

*16. Aa 14, 15, MP

*17. Aa C -Aa 16, 9, Conj

18. -(�x)(Ax / Bx) 10-17, IP

QED

21. 1. -(�x)[Rx / (Tx C Ux)]

2. (�x){(Tx e -Ux) e [Sx / (Rx w Wx)]}

*3. Rx ACP

*4. (�x)-[Rx / (Tx C Ux)] 1, QE

*5. -[Rx / (Tx C Ux)] 4, UI

*6. -{[Rx C (Tx C Ux)] w [(Tx C Ux) e Rx]} 5, equiv

*7. -[Rx C (Tx C Ux)] C -[(Tx C Ux) e Rx] 6, DM

*8. -[Rx C (Tx C Ux)] 7, simp

*9. -Rx w -(Tx C Ux) 8, DM

*10. Rx e -(Tx C Ux) 9, impl

*11. -(Tx C Ux) 3, 10 MP

*12. -Tx w -Ux 11, DM

*13. Tx e -Ux 12, impl

*14. (Tx e -Ux) e [Sx / (Rx w Wx)] 2, UI

*15. Sx / (Rx w Wx) 13, 14 MP

*16. [Sx e (Rx w Wx)] C [(Rx w Wx) e Sx] 15, equiv

*17. [(Rx w Wx) e Sx] C [Sx e (Rx w Wx)] 16, com

*18. (Rx w Wx) e Sx 17, simp

*19. Rx w Wx 3, add

*20. Sx 18, 19 MP

*21. Sx w Vx 20, add

22. Rx e (Sx w Vx) 3-21 CP

23. (�x)[Rx e (Sx w Vx)] 22, UG

QED
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22. 1. (�x)[(Lx C Ix) e -Kx]

2. (�x)[Mx w (Jx C Nx)]

3. (�x)(Kx e -Mx)

4. (�x)(Ix C Kx) / -(�x)(Jx e Lx)

*5. (�x)(Jx e Lx) AIP

*6. Ia C Ka 4, EI

*7. Ka C Ia 6, com

*8. Ka 7, simp

*9. Ka e -Ma 3, UI

*10. -Ma 9, 8,  MP

*11. Ma w (Ja C Na) 2, UI

*12. Ja C Na 11, 10, DS

*13. (La C Ia) e -Ka 1, UI

*14. La e (Ia e -Ka) 13, exp

*15. Ja 12, simp

*16. Ja e La 5, UI

*17. La 16, 15, MP

*18. Ia e -Ka 14, 17, MP

*19. Ia 6, simp

*20. -Ka 18, 19, MP

*21. Ka C -Ka 8, 20, conj

22. -(�x)(Jx e Lx) 5-21, IP

QED

23. 1. (�x)(Ax / Dx)

2. (�x)[(-Bx e Cx) e Dx]

3. (�x)[(Ex e Bx) C (Dx e Cx)]

4. Ax / Dx 1, UI

5. (Ax e Dx) C (Dx e Ax) 4, equiv

*6. Ax ACP

*7. Ax e Dx 5, simp

*8. Dx 6, 7 MP

*9. (Ex e Bx) C (Dx e Cx) 3, UI

*10. Dx w Ex 8, add

*11. Ex w Dx 10, com

*12. Bx w Cx 9, 11 CD

13. Ax e (Bx w Cx) 6-12 CP

*14. Bx w Cx ACP

*15. (-Bx e Cx) e Dx 2, UI

*16. --Bx w Cx 14, DN

*17. -Bx e Cx 16, impl

*18. Dx 15, 17 MT

*19. (Dx e Ax) C (Ax e Dx) 5, com

*20. Dx e Ax 19, simp

*21. Ax 18, 20 MP

22. (Bx w Cx) e Ax 14-21 CP

23. [Ax e (Bx w Cx)] C [(Bx w Cx) e Ax] 13, 22 conj

24. Ax / (Bx w Cx) 23, equiv

25. (�x)[Ax / (Bx w Cx)] 24, UG

QED
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24. 1. (�x)[Fx w (Gx C Hx)]

2. (�x)[-Jx e (-Fx C -Hx)]

3. (�x)(-Gx e -Jx) / (�x)(Fx w Gx)

4. Fa w (Ga C Ha) 1, EI

*5. (�x)-(Fx w Gx) AIP

*6. -(Fa w Ga) 5, UI

*7. -Fa C -Ga 6, DM

*8. -Fa 7, Simp

*9. Ga w Ha 4, 8, DS

*10. -Ga C -Fa 8, Com

*11. -Ga 10, Simp

*12. -Ga e -Ja 3, UI

*13. -Ja 12, 11, MP

*14. -Ja e (-Fa C -Ha) 2, UI

*15. -Fa C -Ha 14, 13, MP

*16. -Ha C -Fa 15, Com

*17. -Ha 16, Simp

*18. Ha 9, 11, DS

*19. Ha C -Ha 18, 17, Conj

20. -(�x)-(Fx w Gx) 5-19, IP

21. (�x)(Fx w Gx) 20, QE

QED
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25. 1. -(�x)[(Kx C Lx) C (Mx / Nx)]

2. (�x){Kx e [Ox w (Px e Qx)]}

3. (�x)[(Lx C Mx) e Px]

4. (�x)[Nx w (Kx C -Qx)]

*5. Lx ACP

*6. (�x)-[(Kx C Lx) C (Mx / Nx)] 1, QE

*7. -[(Kx C Lx) C (Mx / Nx)] 6, UI

*8. -(Kx C Lx) w -(Mx / Nx) 7, DM

*9. (Kx C Lx) e -(Mx / Nx) 8, impl

*10. Kx e [Ox w (Px e Qx)] 2, UI

*11. (Lx C Mx) e Px 3, UI

*12. Nx w (Kx C -Qx) 4, UI

* *13. -(Nx w Ox) AIP

* *14. -Nx C -Ox 13, DM

* *15. -Nx 14, simp

* *16. Kx C -Qx 12, 15 DS

* *17. Kx 16, simp

* *18. Kx C Lx 5, 17 conj

* *19. -(Mx / Nx) 9, 18 MP

* *20. -[(Mx C Nx) w (-Mx C -Nx)] 19, equiv

* *21. -(Mx C Nx) C -(-Mx C -Nx) 20, DM

* *22. -(Mx C Nx) C --(Mx w Nx) 21, DM

* *23. -(Mx C Nx) C (Mx w Nx) 22, DN

* *24. (Mx w Nx) C -(Mx C Nx) 23, com

* *25. Mx w Nx 24, simp

* *26. Nx w Mx 25, com

* *27. Mx 15, 26 DS

* *28. Lx C Mx 5, 27 conj

* *29. Px 11, 28 MP

* *30. -Qx C Kx 16, com

* *31. -Qx 30, simp

* *32. Px C -Qx 29, 31 conj

* *33. --Px C -Qx 32, DN

* *34. -(-Px w Qx) 33, DM

* *35. -(Px e Qx) 34, impl

* *36. -Ox C -Nx 14, com

* *37. -Ox 36, simp

* *38. -Ox C -(Px e Qx) 35, 37 conj

* *39. -[Ox w (Px e Qx)] 38, DM

* *40. -Kx 10, 39 MT

* *41. Kx C -Kx 17, 40

*42. --(Nx w Ox) 13-41 IP

*43. Nx w Ox 42, DN

44. Lx e (Nx w Ox) 5-43 CP

45. (�x)[Lx e (Nx w Ox)] 44, UG

QED
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Exercises 3.6*

1. Domain: {Philosophers}

a: Descartes; b: Hume; c: Kant; d: Godel

Ex: x is an empiricist

Rx: x is a rationalist

Ox: x defends the ontological argument

2. Domain: {Animals}

a: Debby the dolphin

b: Harry the horse

c: Barney the bat

d: Sophie the bird

Mx: x is a mammal

Lx: x has four legs

Wx: x has wings

3. Domain: {Cities}

a: New York; b: Paris; c: London; d: Sydney

Ex: x is in Europe

Kx: koalas are native to the area around x

Px: x is expensive

These solutions are just samples.  Many alternatives

are possible.

Exercises 3.7*

1. Counterexample in a 1-member universe in which:

Aa: true

Ba: false

2. Counterexample in a 1-member universe in which:

Ca: false  

Da: true

3. Counterexample in a 2-member universe in which:

Eb: false Ec: true

Fb: true Fc: true

4. Counterexample in a 1-member universe in which: 

Ka: true

La: true

Ma: true

Na: false

5. Counterexample in a 1-member universe in which:

Gc: true

Hc: true

Ic: false

Jc: true

6. Counterexample in a 2-member universe in which:

Da: true Db: true

Ea: true Eb: false

Ga: falseGb: true

7. Counterexample in a 1-member universe in which: 

Pa: true

Qa: true

Ra: true

Sa: false

8. Counterexample in a 4-member universe in which:

La: true Lb: false

Ma: false Mb: false

Na: true Nb: true

Oa: true Ob: false

Lc: false Ld: false

Mc: false Md: true

Nc: falseNd: false

Oc: true Od: true

9. Counterexample in a 2-member universe in which: 

Aa: true Ab: true

Ba: true Bb: true

Ca: true Cb: false

Da: falseDb: true

10. Counterexample in a 2-member universe in which: Pa: true Pb: false
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Qa: true Qb: true

Ra: true Rb: true

Sa: false Sb: true

11. Counterexample in a 2-member universe in which:

La: true Lb: false

Ma: true Mb: true

Na: true Nb: false

Oa: true Ob: false

12. Counterexample in a 3-member universe in which:

Ia: true Ib: false Ic: true

Ja: true Jb: true Jc: false

Ka: true Kb: true Kc: false

13. Counterexample in a 2-member universe in which: 

Aa: falseAb: true

Ba: false Bb: true

Ca: true Cb: false

Da: true Db: false

14. Counterexample in a 2-member universe in which:

Ra: false Rb: false

Sa: true Sb: false

Ta: true Tb: false

15. Counterexample in a 2-member universe in which:

Aa: true Ab: false

Ba: false Bb: true

Ca: false Cb: true

16. Counterexample in a 2-member universe in which:

Oa: true Ob: false

Pa: false Pb: true

Qa: falseQb: true

Ra: true Rb: false

17. Counterexample in a 3-member universe in which:

Ea: true Eb: true Ec: false

Fa: true Fb: false Fc: true

Ga: true Gb: false Gc: true

18. Counterexample in a 2-member universe in which:

Aa: true Ab: false

Ba: false Bb: true

Ca: false Cb: false

Da: falseDb: true

19. Counterexample in a 2-member universe in which:

Ea: true Eb: false

Fa: false Fb: true

Ga: falseGb: true

Ha: falseHb: true

20. Counterexample in a 2-member universe in which:

Ia: false Ib: true

Ja: false Jb: true

Ka: true Kb: false

La: true Lb: false

21. Counterexample in a 4-member universe in which:

Ma: true Mb: true

Na: true Nb: true

Oa: true Ob: false

Pa: false Pb: false

Mc: false Md: false

Nc: falseNd: false

Oc: true Od: false

Pc: false Pd: true

22. Counterexample in a 2-member universe in which:

Sa: false Sb: true

Ta: true Tb: false

Ua: falseUb: true

23. Counterexample in a 2-member universe in which:

Na: true Nb: false

Oa: true Ob: false

Pa: false Pb: true

Qa: falseQb: true 

24. Counterexample in a 2-member universe in which:

Ha: true Hb: false

Ia: false Ib: true

Ja: false Jb: true

25. Counterexample in a 3-member universe in which:

Ka: true Kb: false Kc: true

La: true Lb: true Lc: false

Ma: false Mb: false Mc: true

26. Counterexample in a 2-member universe in which:

Aa: true Ab: true

Ba: false Bb: true

Ca: true Cb: false

27. Counterexample in a 3-member universe in which:

Ha: true Hb: true Hc: true

Ia: false Ib: true Ic: true

Ja: true Jb: true Jc: false

Ka: falseKb: false Kc: false
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28. Counterexample in a 4-member universe in which:

Pa: true Pb: true

Qa: true Qb: true

Ra: false Rb: false

Pc: false Pd: false

Qc: true Qd: false

Rc: true Rd: true

29. Counterexample in a 3-member universe in which:

Ha: true Hb: true Hc: false

Ia: true Ib: false Ic: true

Ja: true Jb: false Jc: true

30. Counterexample in a 3-member universe in which:

Ka: true Kb: true Kc: false

La: true Lb: false Lc: true

Ma: true Mb: false Mc: true

Na: true Nb: false Nc: false

31. Counterexample in a 3-member universe in which:

Sa: false Sb: false Sc: true

Ta: false Tb: true Tc: true

Ua: true Ub: true Uc: false

32. Counterexample in a 3-member universe in which:

Aa: true Ab: true Ac: true

Ba: true Bb: true Bc: false

Ca: false Cb: falseCc: true

Da: falseDb: false Dc: true

33. Counterexample in a 3-member universe in which:

Fa: true Fb: false Fc: true

Ga: true Gb: true Gc: false

Ha: true Hb: false Hc: false

34. Counterexample in a 4-member universe in which:

Ea: false Eb: true

Fa: false Fb: true

Ga: falseGb: true

Ha: falseHb: true

Ec: true Ed: false

Fc: false Fd: true

Gc: true Gd: true

Hc: true Hd: true

35. Counterexample in a 2-member universe in which:

Pa: true Pb: false

Qa: true Qb: false

Ra: true Rb: false

Sa: false Sb: true

*Alternative counterexamples to many of these

arguments are possible.

Exercises 3.8a

1. Tdc

2. -Bej

3. Lfh

4. Tlc

5. Gba

6. Bglh

7. Ijwk

8. Mmsi

9. -Dnos

10. Grwo
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Exercises 3.8b

1. (�x)(Px C Sxa)

2. (�x)(Px e Sxa)

3. (�x)(Px e Sax)

4. -(�x)(Px C Sxa)

5. (�x)[Px e (�y)(Py C Sxy)]

6. (�x)[Px C (�y)(Py e Sxy)]

7. (�x)(Rx e Lxb)

8. (�x)(Rx e Lbx)

9. (�x)(Rx C Lxb)

10. -(�x)(Rx C Lxb)  or  (�x)(Rx e -Lxb)

11. (�x)[Rx e (�y)(My C Lxy)]

12. (�x)[Rx C (�y)(Hy C Lxy)]

13. Iocm

14. (�x)(Px C Ixcm)

15. (�x)[Px C (�y)(Py e Ixcy)]

16. (�x)(Px e Sxj)

17. (�x)[Rx e (�y)(Py C Hxy)]

18. (�x)[Kx e (�y)(Py e Lxy)]

19. (�x)[Bx e (�y)(Ny C Lxy)]

20. (�x)[Cx C (�y)(Py e Wxy)]

21. (�x)[Cx C (�y)(Ly e Fxy)]

22. -(�x)[Tx C (�y)(Cy e Fxy)]

23. -(�x)[Lx C (�y)(Ty C Fxy)]

24. (�x)[Dx C (�y)(Py C Txy)]

25. (�x)[Dx e (�y)(Py C Fxy)]

26. -(�x)[Dx C (�y)(Fy C Cxy)]

27. (�x)[Jx e (�y)(Fy e Sxy)]

28. (�x)[Cx e (�y)(Sy C Dxy)]

29. (�x)[Mx e (�y)(Cy C Txy)]

30. (�x)[Mx C (�y)(Sy C Txy)]

31. (�x){Rx C (�y)[My C (�z)(Bz C Sxyz)]}

32. (�x){(Kx C Px) C (�y)[(Ey C Sy) C Hxy]}

33. (�x)[(Cx C Px) C (�y)(Ay C Sxy)]

34. (�x){Fx C (�y)[Vy C (�z)(Dz C Rxyz)]}

35. (�x)[(Bx C Wax) e Rjx]

36. (�x){Px C (�y)[(By C Way) e Rxy]}

37. (�x)(Gx e -Mxx)

38. (�x)[Sx e -(�y)(Px C Mxy)]

39. (�x)[Px e (�y)(�z)(Mz C Bxyz)]

40. -(�x){Mx C (�y)[Py e (�z)Byzx]}

Exercises 3.8c

1. Every dog has its day.

2. What’s fair for one is fair for all.

3. Rolling stones gather no moss.

4. Everything comes to those who wait.

5. God helps those who help themselves.

6. There is no place like home.

7. Every cloud has a silver lining.

8. A person is judged by the company (s)he keeps.

9. Where there’s smoke, there’s fire.

10. A jack of all trades is a master of none.

11. People who live in glass houses shouldn’t throw stones.

12. Nothing ventured, nothing gained.

Exercises 3.9a*

1. (�x)[(Ax C -Bx) w (Cx w Dx)] RP1

2. (�x)[Fx e (�y)Gy] RP9

or (�y)[(�x)Fx e Gy] RP7

3. (�x)(�y)[Hx C (Iy C Jxy)] RP3

4. (�x)(Px e Ra) RP9

5. (�x)(�y)[Kx C (Ly e Mxy)] RP4

6. (�x)[Jx e (�y)Ky] RP10

or (�y)[(�x)Jx e Ky] RP7

7. (�x)[(Px C Qx) e (Ra C Pa)] RP10

8. (�x)(�y)[Nx w (Oy C Pxy)] RP5

9. (�x)[(Ex e Fx) C (-Fx / Gx)] RP2

10. (�x)(�y)[Qx w (Ry e Sxy)] RP6

11. (�x)(�y)(Dxy e Ex) RP9

12. (�x)(�y)[Tx e (Uy C Vxy)] RP7

13. (�x)(�y)[Ax e (By e Cxy)] RP8

14.  (�x)(�y)[Rxy e (Px C Qx)] RP10

*Alternative solutions to some of these transformations are

possible.



What Follows, Solutions to Exercises, page 409

Exercsies 3.9b*

1. (�x)Rx C (�x)(Tx w Sx) RP2

2. (�x)[(Kx / Lx) C (�y)(My C Nxy)] RP5

3. (�x)[(Dx C Ex) w (�y)(Fy e Gxy)] RP6

4. (�x)[Hx e (�y)(Iy C Jxy)] RP3

5. (�x)(Ox w Qx) e (�y)Py RP9

6. (�x)[(�y)Axy e (Bx w Cx)] RP10

7. (�x)[(Ax w -Cx) e (�y)(By e Dxy)] RP8

8. (�x)[(Fx C Gx) C (�y)(Hy e Exy)] RP4

9. (�x)[(�y)Ixy e (Jx C Kx)] RP9

10. (�x)(Lx / Mx) w (�x)Nx RP1

11. (�x)(Px C -Qx) e (�y)Oy RP10

12. (�x)[Sx e (�y)(Ty C Rxy)] RP7

*Alternative solutions to some of these transformations are possible.

Exercises 3.9c

1. (�x)[Mx C (�y)(Sy C Txy) C (�z)(Dz C Txz)]

2. (�x){Lx e [(�y)(Ty C Fyx) C (�z)(Cz e Fzx)]}

3. (�x){(Bx e (�y)[Ty C (�z)(Sz C Bxyz)]}

4. (�x){Px C (�y){Py C (�z)[(Bz C Wyz) e Rxz]}}

5. (�x){(Lx C Hx) e (�y)[(Ly C -Hy) C Dyx]}

6. (�x){Px C [(�y)Oy C (�z)(Hz C Dxyz)]}

7. (�x){Px C -[(�y)Oy C (�z)(Hz C Dxyz)]}

8. (�x){Px C [(�y)Oy C (�z)(Hz C Dxzy)]}

9. (�x){Px e -[(�y)Oy C (�z)(Hz C Dxyz)]}

10. (�x)[Sx e (�y)(Cy e Fxy)]

11. (�x){Rx C (�y)[Jy C (�z)(Ez C Sxyz)]}

12. (�x){Rx e -(�x)[Jx C (�z)(Ez C Sxyz)]}

13. (�x){(Kx C Px) C (�y)[Dy C (�z)(Az C Rxyz)]}

14. (�x){(Ex C Bx) C (�y)[(Cy C Iy) C (�z)(Hz C Kxyz)]}

15. (�x)[Wx C (�y)(Sy C Djxy)]

16. (�x){(Px C Tx) C [(�y)Wy C (�z)(Sz C Dxyz)]}

17. (�x){Cx C (�y)[(Fy C Oxy) C Eax]}

18. (�x){(Yx C Bx) C {(�y)Cy C (�z)[Fz C (Oyz C Exy)]}}

19. (�x){Px e {(�y)Vy C (�z)[Fz C (Gzy C Exy)]}}

20. (�x){(Ix C Sx) e {(�y)By C (�z)[Pz C (Wzy C Exy)]}}

21. (�x){(Px C Sx) C (�y)[(Cy C Ly) C Sxy)]}

22. (�x){[Rx C (Cx C Sx)] C [(�y)(Ty C Ey) C (�z)(Bz C Bxyz)]}

23. (�x){(Gx C Ix) C {(�y)(Cy  C Wy) C (�z)[(Ozx C Szx) C Txyz]}}

24. (�x){(Gx C Ix) e {(�y)(Cy  C Wy) e (�z)[(Oxz C Szx) e -Txyz]}}

25. (�x){(Wx C Dx) C {(�y)(Gy C Cy) e (�z)[(Uz C Tz) C Pxzy]}}

26. (�x)[(Ax C Cx) e (�y)(Fy C Hxy)]

27. (�x){(Mx C Fx) C (�y)[(Ty C By) C Syx]}

28. (�x){(Mx C Fx) e (�y)[(Ty C By) e -Syx]}

29. (�x)[(Tx C Bx) C Sxx]

30. (�x){(Tx C Bx) C (�y)[(Py C Ty) e Sxy]}

31. (�x){(Tx C Bx) C (�y){[(My C Ty) C -Syy)] e Sxy]}}

Exercises 3.9d

TBA

Exercises 3.10a
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1. 1. (�x)[(�y)Bxy e (Ax w Cx)]

2. (�z)(-Az C -Cz)

3. -Aa C -Ca 2, EI

4. -(Aa w Ca) 3, DM

5. (�y)Bay e (Aa w Ca) 1, UI

6. -(�y)Bay 4, 5 MT

7. (�y)-Bay 6, QE

8. (�z)(�y)-Bzy 7, EG

QED

2. 1. (�x)[Qx w (�y)(Ry C Pxy)]

2. -(�x)(Sx w Qx)

3. Qa w (�y)(Ry C Pay) 1, EI

4. (�x)-(Sx w Qx) 2, QE

5. -(Sa w Qa) 4, UI

6. -Sa C -Qa 5, DM

7. -Qa C -Sa 6, com

8. -Qa 7, simp

9. (�y)(Ry C Pay) 3, 8 DS

10. (�z)(�y)(Ry C Pzy) 9, EG

QED

3. 1. (�x)[(�y)Uxy e (Tx C Vx)]

2. -(�x)Tx

3. (�x)-Tx 2, QE

4. (�y)Uxy e (Tx C Vx) 1, UI

5. -Tx 3, UI

6. -Tx w -Vx 5, add

7. -(Tx C Vx) 6, DM

8. -(�y)Uxy 4, 7 MT

9. (�y)-Uxy 8, QE

10. -Uxa 9, EI

11. (�z)-Uza 10, EG

QED

4. 1. (�x)[Mx C (�y)(Ny C Lxy)]

2. (�x)(�y)(Lxy e (�z)Oyz)

3. Ma C (�y)(Ny C Lay) 1, EI

4. (�y)(Ny C Lay) C Ma 3, com

5. (�y)(Ny C Lay) 4, simp

6. Nb C Lab 5, EI

7. (�y)(Lay e (�z)Oyz) 2, UI

8. Lab e (�z)Obz 7, UI

9. Lab C Nb 6, Com

10. Lab 9, Simp

11. (�z)Obz 8, 10, MP

12. Obc 11, EI

13. (�y)Oby 12, EG

14. (�x)(�y)Oby 13, EG

QED
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5. 1. Aa C (Ba C -Cab)

2. (�y)Cay w (�z)Dbz

3. (Ba C -Cab) C Aa 1, Com

4. Ba C -Cab 3, Simp

5. -Cab C Ba 4, Com

6. -Cab 5, Simp

7. (�y)-Cay 6, EG

8. -(�y)Cay 7, QE

9. (�z)Dbz 2, 8, DS

10. (�y)(�z)Dyz 9, EG

QED

6. 1. (�x)[Ex C (Fx w Gx)]

2. (�x){Hx C (�y)[(Fy w Gy) e Ixy]}

3. Ha C  (�y)[(Fy w Gy) e Iay] 2, UI

4.  (�y)[(Fy w Gy) e Iay] C Ha 3, com

5.  (�y)[(Fy w Gy) e Iay] 4, simp

6. (Fy w Gy) e Iay 5, UI

7. Ey C (Fy w Gy) 1, UI

8. (Fy w Gy) C Ey 7, com

9. Fy w Gy 8, simp

10. Iay 6, 9 MP

11. (�x)Ixy 10, EG

12. (�y)(�x)Ixy 11, EG

QED

7. 1. (�x)[(Fx C Hx) e (�y)(Gy C Ixy)]

2. (�x)[Jx C (�y)(Gy e -Ixy)]

3. Ja C (�y)(Gy e -Iay) 2, EI

4. (�y)(Gy e -Iay) C Ja 3, com

5. (�y)(Gy e -Iay) 4, Simp

6. Gy e -Iay 5, UI

7. -Gy w -Iay 6, impl

8. -(Gy C Iay) 7, DM

9. (�y)-(Gy C Iay) 8, EG

10. -(�y)(Gy C Iay) 9, QE

11. (Fa C Ha) e (�y)(Gy C Iay) 1, UI

12. -(Fa C Ha) 10, 11 MT

13. (�z)-(Fz C Hz) 12, EG

14. -(�z)(Fz C Hz) 13, QE

QED
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8. 1. (�x)[Ex e (�y)(Fy C Gxy)]

2. (�x)(Ex C Hxb)

3. Ea C Hab 2, EI

4. Ea 3, simp

5. Ea e (�y)(Fy C Gay) 1, UI

6. (�y)(Fy C Gay) 4, 5 Mp

7. Fb C Gab 6, UI

8. Gab C Fb 7, com

9. Gab 8, simp

10. Hab C Ea 3, com

11. Hab 10, simp

12. Gab C Hab 9, 11 conj

13. (�y)(Gay C Hay) 12, EG

14. (�x)(�y)(Gxy C Hxy) 13, EG

QED

9. 1. (�x)[Ux e (�y)(Ty C Vxy)]

2. (�x)Vax e (�x)Vax

3. Ua / (�x)(�y)Vxy

4. Ua e (�y)(Ty C Vay) 1, UI

5. (�y)(Ty C Vay) 4, 3, MP

6. Tb C Vab 5, EI

7. Vab C Tb 6, com

8. Vab 7, simp

9. (�x)Vax 8, EG

10. (�x)Vax 2, 9, MP

11. Vay 10, UI

12. (�y)Vay 11, UG

13. (�x)(�y)Vxy 12, EG

QED

10. 1. (�x)(�y)[Ax e (Dy e Byx)]

2. (�x)(�y)[Dx C (Bxy e Cy)]

*3. (�x)Ax ACP

*4. (�y)[Da C (Bay e Cy)] 2, EI

*5. Da C (Baa e Ca) 4, UI

*6. Aa 3, UI

*7. (�y)[Aa e (Dy e Bya)] 1, UI

*8. Aa e (Da e Baa) 7, UI

*9. Da e Baa 8, 6, MP

*10. Da 5, simp

*11. (Baa e Ca) C Da 5, com

*12. Baa e Ca 11, simp

*13. Da e Ca 9, 12 HS

*14. Ca 13, 10 MP

*15. (�y)Cy 14, EG

16. (�x)Ax e (�y)Cy 3-15 CP

QED
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11. 1. (�x)[Ax e (�y)(Cy C Dxy)}

2. (�x)(�y)(Dxy e By) 

*3. (�x)Ax ACP

*4. Ax 3, UI

*5. Ax e (�y)(Cy C Dxy) 1, UI

*6. (�y)(Cy C Dxy) 4, 5 MP

*7. Ca C Dxa 6, EI

*8. Dxa C Ca 7, com

*9. Dxa 8, simp

*10. (�y)(Dxy e By) 2, UI

*11. Dxa e Ba 10, UI

*12. Ba 9, 11 MP

*13. Ca 7, simp

*14. Ba C Ca 12, 13 conj

*15. (�y)(By C Cy) 14, EG

16. (�x)Ax e (�y)(By C Cy) 3-15 CP

QED

12. 1. (�x){Px C (�y)[Oy e (�z)(Rz e Qxyz)]}

2. (�x)[Px / (Ox C Rx)]

3. Pa C (�y)[Oy e (�z)(Rz e Qayz)]1, EI

4. Pa / (Oa C Ra) 2, UI

5. Pa 3, simp

6. [Pa e (Oa C Ra)] C [(Oa C Ra) e Pa] 4, equiv

7. Pa e (Oa C Ra) 6, simp

8. Oa C Ra 5, 7 MP

9. Oa 8, simp

10. Ra C Oa 8, com

11. Ra 10, simp

12. (�y)[Oy e (�z)(Rz e Qayz)] C Pa 3, com

13. (�y)[Oy e (�z)(Rz e Qayz)] 12, simp

14. Oa e (�z)(Rz eQaaz) 13, UI

15. (�z)(Rz e Qaaz) 9, 14 MP

16. Ra e Qaaa 15, UI

17. Qaaa 11, 16 MP

18. (�x)Qxxx 17, EG

QED
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13. 1. (�x)(Mx e -Ox) e (�y)Ny

2. (�y)[Ny e (�z)(Pz C Qyz)]

3. -(�x)(Mx C Ox) / (�x)[Nx C (�y)Qxy]

4. (�x)-(Mx C Ox) 3, QE

5. (�x)(-Mx w -Ox) 4, DM

6. (�x)(Mx e -Ox) 5, Impl

7. (�y)Ny 1, 6, MP

8. Na 7, EI

9. Na e (�z)(Pz C Qaz) 2, UI

10. (�z)(Pz C Qaz) 9, 8, MP

11. Pb C Qab 10, EI

12. Qab C Pb 11, com

13. Qab 11, simp    

14. (�y)Qay 13, EG

15. Na C (�y)Qay 8, 14, Conj

16. (�x)[Nx C (�y)Qay]  15, EG

QED

14. 1. (�x)(�y)[Kx e (My e Lxy)]

2. (�x)(�y)[Mx C (Ky C Nxy)]

3. (�y)[Ma C (Ky C Nay)] 2, EI

4. Ma C (Kb C Nab) 3, EI

5. (Ma C Kb) C Nab 4, assoc

6. Ma C Kb 5, simp

7. Ma 6, simp

8. Kb C Ma 6, com

9. Kb 8, simp

10. (�y)[Kb e (My e Lby)] 1, UI

11. Kb e (Ma e Lba) 10, UI

12. Ma e Lba 9, 11 MP

13. Lba 7, 12 MP

14. Nab C (Ma C Kb) 5, com

15. Nab 14, simp

16. Lba C Nab 13, 15 conj

17. (�x)(Lxa C Nax) 16, EG

18. (�y)(�x)(Lxy C Nyx) 17, EG

QED
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15. 1. (�x)[Rx e (�y)(Ty e Uxy)]

2. (�y)[(�x)(Uxy e Sy)]

*3. Rx C Tx ACP

*4. Rx 3, simp

*5. Tx C Rx 3, com

*6. Tx 5, simp

*7. (�x)Tx 6, EG

*8. Tb 6, EI

*9. Rx e (�y)(Ty e Uxy) 1, UI

*10. (�y)(Ty e Uxy) 4, 9 MP

*11. Tb e Uxb 10, UI

*12. (�x)(Uxb e Sb) 2, UI

*13. Uxb e Sb 12, UI

*14. Tb e Sb 11, 13 HS

*15. Sb 8, 14 MP

*16. (�y)Sy 15, EG

17. (Rx C Tx) e (�y)Sy 3-15 CP

18. (�x)[(Rx C Tx) e (�y)Sy] 17, UG

QED

16. 1. (�x)(�y)[(Fx C Dx) w (Ey e Gxy)]

2. (�x)[(�y)Gxy e (�z)Hxz]

3. -(�x)Fx C (�z)Ez

4. (�y)[(Fa C Da) w (Ey e Gay)] 1, EI

5. (Fa C Da) w (Ez e Gaz) 4, UI

6. -(�x)Fx 3, simp

7. (�x)-Fx 6, QE

8. -Fa 7, UI

9. -Fa w -Ha 8, add

10. -(Fa C Ha) 9, DM

11. Ez e Gaz 5, 10 MP

12. (�z)Ez C -(�x)Fx 3, com

13. (�z)Ez 12, simp

14. Ez 13, UI

15. Gaz 11, 14 MP

16. (�y)Gay 15, EG

17. (�y)Gay e (�z)Haz 2, UI

18. (�z)Haz 16, 17 MP

19. (�y)(�z)Hyz 18, EG

QED
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17. 1. (�x)(Kx / Lx) C (�x)Jx

2. (�x)[Jx e (�y)(-Ky C Mxy)]

3. (�x)Jx C (�x)(Kx / Lx) 1, com

4. (�x)Jx 3, simp

5. Jx 4, UI

6. Jx e (�y)(-Ky C Mxy) 2, UI

7. (�y)(-Ky C Mxy) 5, 6 MP

8. -Ka C Mxa 7, EI

9. (�x)(Kx / Lx) 1, simp

10. Ka / La 9, UI

11. (Ka e La) C (La e Ka) 10, equiv

12. (La e Ka) C (Ka e La) 11, com

13. La e Ka 12, simp

14. -Ka 8, simp

15. -La 13, 14 MT

16. Mxa C -Ka 8, com

17. Mxa 16, simp

18. -La C Mxa 15, 17 conj

19. (�x)(-Lx C Mxx) 18, EG

QED

18. 1. (�x)[Kx e (�y)(Jy C Ixy)]

2. (�x)(�y)(Ixy e Lx)

*3. -(-Kx w Lx) AIP

*4. --Kx C -Lx 3, DM

*5. Kx C -Lx 4, DN

*6. Kx 5, simp

*7. Kx e (�y)(Jy C Ixy) 1, UI

*8. (�y)(Jy C Ixy) 6, 7 MP

*9. Ja C Ixa 8, EI

*10. Ixa C Ja 9, com

*11. Ixa 10, simp

*12. (�y)(Ixy e Lx) 3, UI

*13. Ixa e Lx 12, UI

*14. Lx 11, 13 MP

*15. -Lx C Kx 5, com

*16. -Lx 15, simp

*17. Lx C -Lx 14, 16 conj

18. --(-Kx w Lx) 3-17 IP

19. -Kx w Lx 18, DN

20. (�x)(-Kx w Lx) 19, UG

QED



What Follows, Solutions to Exercises, page 417

19. 1. (�x)[(Ox e Nx) e (�y)(Qy C -Rxy)]

2. (�y)(�x)(Pxy e Rxy)

*3. Nx w -Ox ACP

*4. -Ox w Nx 3, com

*5. Ox e Nx 4, impl

*6. (Ox e Nx) e (�y)(Qy C -Rxy) 1, UI

*7. (�y)(Qy C -Rxy) 5, 6 MP

*8. Qy C -Rxy 7, UI

*9. -Rxy C Qy 8, com

*10. -Rxy 9, simp

*11. (�x)(Pxy e Rxy) 2, UI

*12. Pxy e Rxy 11, UI

*13. -Pxy 10, 12 MT

*14. Qy 8, simp

*15. Qy C -Pxy 13, 14 conj

*16. --Qy C -Pxy 15, DN

*17. -(-Qy w Pxy) 16, DM

*18. -(Qy e Pxy) 17, impl

*19. (�y)-(Qy e Pxy) 18, UG

20. (Nx w -Ox) e (�y)-(Qy e Pxy) 3-19 CP

21. (�x)[(Nx w -Ox) e (�y)-(Qy e Pxy)] 20, UG

QED

20. 1. (�x)[(Fx / Hx) 

2. (�x)(Hx e -Ix)

3. (�x)[Fx C (�y)(Iy C -Gxy)] / (�x)[(Fx C -Ix) C (�y)(Iy C -Gxy)]

4. Fa C (�y)(Iy C -Gay) 3, EI

5. Fa 4, Simp

6. Fa / Ha 1, UI

7. (Fa e Ha) C (Ha e Fa) 6, Equiv

8. Fa e Ha 7, Simp

9. Ha 8, 5, MP

10. Ha e -Ix 2, UI

11. -Ia 10, 9, MP

12. Fa C -Ia 5, 11, Conj

13. (�y)(Iy C -Gay) C Fa 4, Com

14. (�y)(Iy C -Gay) 13, Simp

15.  (Fa C -Ia) C (�y)(Iy C -Gay) 12, 14, Conj

16. (�x)[(Fx C -Ix) C (�y)(Iy C -Gxy)] 15, EG

QED
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21. 1. (�x){Ax e (�y)[By C (�z)(-Cz C Dzxy)]}

2. -(�x)(Ax e Cx) / (�x)(�y)Dxxy

3. (�x)-(Ax e Cx) 2, QE

4. (�x)-(-Ax w Cx) 3, Impl

5. (�x)(--Ax C -Cx) 4, DM

6. (�x)(Ax C -Cx) 5, DN

7. Aa C -Ca 6, EI

8. Aa 7, Simp

9. Aa  e (�y)[By C (�z)(-Cz C Dzay)]} 1, UI

10. (�y)[By C (�z)(-Cz C Dzay)]} 9, 8, MP

11. Bb C (�z)(-Cz C Dzab) 10, EI

12. (�z)(-Cz C Dzab) C Bb 11, Com

13. (�z)(-Cz C Dzab) 12, Simp

14. -Ca C Daab 13, UI

15. Daab C -Ca 14, Com

16. Daab 15, Simp

17. (�y)Daay 16, EG

18. (�x)(�y)Dxxy 17, Eg

QED

22. 1. (�x)[(Bx e Ax) e (�y)(Cy C Dxy)]

2. (�x)[(�y)-Dxy w Ex]

3. (�x)Ex e -(�x)Cx

*4. (�x)-Bx AIP

*5. -Ba 4, EI

*7. -Ba w Aa 4, add

*8. Ba e Aa 5, impl

*9. (Ba e Aa) e (�y)(Cy C Day) 1, UI

*10. (�y)(Cy C Day) 6, 7 MP

*11. Cb C Dab 8, EI

*12. Cb 9, simp

*13. (�x)Cx 12, EG

*14. --(�x)Cx 13, DN

*15. -(�x)Ex 3, 14, MT

*16. (�x)-Ea 15, QE

*17. -Ea 16, UI

*18. (�y)-Day w Ea 2, UI

*19. Ea w (�y)-Day 18, Com

*20. (�y)-Day 19, 17, DS

*21. -Dab 20, UI

*22. Dab C Cb 11, Com

*23. Dab 22, Simp

*24. Dab C -Dab 23, 21, Conj

25. -(�x)-Bx 4-24, IP

26. (�x)Bx 25, QE

QED
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23. 1. (�x){(Tx e -Sx) e (�y)[Uy w (�z)(Vz e Wxyz)]}

2. -(�x)(Tx / Sx)

3. -(�x)(Vx e Ux)

4. (Tx e -Sx) e (�y)[Uy w (�z)(Vz e Wxyz)] 1, UI

5. (�x)-(Tx / Sx) 2, QE

6. -(Tx / Sx) 5, UI

7. -[(Tx C Sx) w (-Tx C -Sx)] 6, equiv

8. -(Tx C Sx) C -(-Tx C -Sx) 7, DM

9. -(Tx C Sx) 8, simp

10. -Tx w -Sx 9, DM

11. Tx e -Sx 10, impl

12. (�y)[Uy w (�z)(Vz e Wxyz)] 4, 11 MP

13. Ub w (�z)(Vz e Wxbz) 12, EI

14. (�x)-(Vx e Ux) 3, QE

15. -(Vb e Ub) 14, UI

16. -(-Vb w Ub) 15, impl

17. --Vb C -Ub 16, DM

18. Vb C -Ub 17, DN

19. Vb 18, simp

20. -Ub C Vb 18, com

21. -Ub 20, simp

22. (�z)(Vz e Wxbz) 13, 21 DS

23. Vb e Wxbb 22, UI

24. Wxbb 19, 23 MP

25. (�y)Wxyy 24, EG

26. (�x)(�y)Wxyy 25, EG

QED

24. 1. (�x)[Fx e (�y)(Hy C Gxy)]

2. (�x)[Hx e (�y)(Ey C Gxy)]

3. (�x)[Ex e (�y)Fy] / (�x)Fx / (�x)Ex

*4. (�x)Fx ACP

*5. Fx 4, UI

*6. Fx e (�y)(Hy C Gxy) 1, UI

*7. (�y)(Hy C Gxy) 6, 5, MP

*8. Ha C Gxa 7, EI

*9. Ha 8, simp

*10. Ha e (�y)(Ey C Gay) 2, UI

*11. (�y)(Ey C Gay) 10, 9, MP

*12. Eb C Gab 11, EI

*13. Eb 12, simp

*14. (�x)Ex 13, EG

15. (�x)Fx e (�x)Ex 5-14 CP

*16. (�x)Ex ACP

*17. Ec 16, EI

*18. Ec e (�y)Fy 3, UI

*19. (�y)Fy 18, 17, MP

*20. Fx 19, UI

*21. (�x)Fx 20, UG

22. (�x)Ex e (�x)Fx 16-21, CP

23. [(�x)Fx e (�x)Ex] C [(�x)Ex e (�x)Fx] 15, 22, Conj

24. (�x)Fx / (�x)Ex 23, equiv

QED

25. 1. (�x){Jx e (�y)[My e (�z)(Lz e Kxyz)]}

2. (�x)(�y)[Mx C (Jy C Nxy)]
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3. -(�x)(Lx e Ox) / (�x){Mx C (�y)[Nxy C (�z)(-Oz C Kyxz)]})

4. (�x)-(Lx e Ox) 3, QE

5. -(La e Oa) 4, EI

6. -(-La w Oa) 5, impl

7. --La C -Oa 6, DM

8. --La 7, simp

9. La 8, DN

10. (�y)[Mb C (Jy C Nby)] 2, EI

11. Mb C (Jc C Nbc) 10, EI

12. Mb 11, simp

13. (Jc C Nbc) C Mb 11, com

14. Jc C Nbc 13, simp

15. Jc 14, simp

16. Nbc C Jc 14, com

17. Nbc 16, simp

18. Jc e (�y)[My e (�z)(Lz e Kcyz)] 1, UI

19. (�y)[My e (�z)(Lz e Kcyz)] 15, 18 MP

20. Mb e (�z)(Lz e Kcbz) 19, UI

21. (�z)(Lz e Kcbz) 12, 20 MP

22. La e Kcba 21, UI

23. Kcba 9, 22 MP

24. -Oa C --La 7, Com

25. -Oa 24, Simp

26. -Oa C Kcba 25, 23, Conj

27. (�z)(-Oz C Kcbz) 26, EG

28. Nbc C (�z)(-Oz C Kcbz) 17, 27, Conj

29. (�y)[Nby C (�z)(-Oz C Kybz)] 28, EG

30. Mb C (�y)[Nby C (�z)(-Oz C Kybz)] 12, 29, Conj

31. (�x){Mx C (�y)[Nxy C (�z)(-Oz C Kyxz)]}) 20, EG

QED 

26. 1. (�x)[Tx e (�y)(Vy e Uxy)]

2. -(�x)(Tx C Sx)

3. Ta C Vb / (�x)[-Sx C (�y)Uxy]

4. Ta e (�y)(Vy e Uay) 1, UI

5. Ta 3, Simp

6. (�y)(Vy e Uay) 4, 5, MP

7. Vb C Ta 3, Com

8. Vb 7, Simp

9. Vb e Uab 6, UI

10. Uab 9, 8, MP

11. (�x)-(Tx C Sx) 2, QE

12. -(Ta C Sa) 11, UI

13. -Ta w -Sa 12, DM

14. --Ta 5, DN

15. -Sa 13, 14, DS

16. (�y)Uay 10, EG

17. -Sa C (�y)Uay 15, 16, Conj

18. (�x)[-Sx C (�y)Uxy] 17, EG

QED
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Exercises 3.10b

1. 1. (�x)[Px C (�y)(Oy CIxy)]

2. (�x)[Fx C (�y)(Py e -Sxy)] / (�x)[Fx C (�y)-Sxy]

3. Fa C (�y)(Py e -Say) 2, EI

4. Fa 3, Simp

5. (�y)(Py e -Say) C Fa 3, Com

6. (�y)(Py e -Say) 5, Simp

7. Pb C (�y)(Oy C Iby) 1, EI

8. Pb 7, Simp

9. Pb e -Sab 6, UI

10. -Sab 9, 8, MP

11. (�y)-Say 10, EG

12. Fa C (�y)-Say 4, 11, Conj

13. (�x)[Fx C (�y)-Sxy] 12, EG

QED

2. 1. (�x)[Bx C (�y)(Gy C Sxy)]

2. (�y)(Gy e -Cy) / -(�x)Ex

3. Ba C (�y)(Gy C Say) 1, EI

4. (�y)(Gy C Say) C Ba 3, com

5. (�y)(Gy C Say) 4, simp

6. Gb C Sab 5, EI

7. Gb e -Cb 2, UI

8. Gb 6, simp

9. -Cb 7, 8 MP

10. (�x)-Cx 9, EG

11. -(�x)Cx 10, QE

QED

3. 1. (�x){[Px C (�y)(My C Txy)] e Ix}

2. Pr C Trc

3. Mc / Ir

4. [Pr C (�y)(My C Try)] e Ir 1, UI

5. Pr 2, Simp

6. Trc C Pr 2, Com

7. Trc 6, Simp

8. Mc C Trc 3, 7, Conj

9. (�y)(My C Try) 8, EG

10. Pr C (�y)(My C Try) 5, 9, Conj

11. Ir 4, 10, MP

QED
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4. 1. (�x)[Cx e (�y)(Dy e Lxy)]

2. -(�x)Lxb C (�x)Cx / -(�y)Dy

3. -(�x)Lxb 2, simp

4. (�x)-Lxb 3, QE

5. -Lab 4, EI

6. (�x)Cx C -(�x)Lxb 2, com

7. (�x)Cx 6, simp

8. Ca 7, UI

9. Ca e (�y)(Dy e Lay) 1, UI

10. (�y)(Dy e Lay) 8,9 MP

11. Db e Lab 10, UI

12. -Db 5, 11 MT

13. (�x)-Dx 12, EG

14. -(�x)Dx 13, QE

QED

5. 1. (�x)[Cx e (�y)(Ty C Fxy)]

2. (�y)(Sy / Ty) / (�x)Cx e (�x)Sx

*3. (�x)Cx ACP

*4. Ca 3, EI

*5. Ca e (�y)(Ty C Fay) 1, UI

*6. (�y)(Ty C Fay) 4, 5 MP

*7. Tb C FaB 6, EI

*8. Tb 7, simp

*9. Sb / Tb 2, UI

*10. (Sb e Tb) C (Tb e Sb)9, equiv

*11. (Tb e Sb) C (Sb e Tb)10, com

*12. Tb e Sb 11, simp

*13. Sb 8, 12 MP

*14. (�x)Sx 13, EG

15. (�x)Cx e (�x)Sx 3-14 CP

QED

6. 1. (�x)[Bx C (�y)(Sy C Baxy)]

2. (�x)(Bx e Fx)

3. Lac / (�x){Lxc C (�y)[Fy C (�z)(Sz C Bxyz)]}

4. Bb C (�y)(Sy C Baby) 1, EI

5. Bb 4, Simp

6. Bb e Fb 2, UI

7. Fb 6, 5, MP

8. (�y)(Sy C Baby) C Bb 4, Com

9. (�y)(Sy C Baby) 8, Simp

10. Sd C Babd 9, EI

11. (�z)(Sz C Babz) 10, EG

12. Fb C (�z)(Sz C Babz) 7, 12, Conj

13. (�y)[Fy C (�z)(Sz C Bayz)] 12, EG

14. Lac C (�y)[Fy C (�z)(Sz C Bayz)] 3, 13, Conj

15. (�x){Lxc C (�y)[Fy C (�z)(Sz C Bxyz)]} 14, EG

QED
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7. 1. (�x)[Px e (�y)(My C Rxy)]

2. (�x)-Px w (�x)-Mx / -(�x)Px

   *3. (�x)Px AIP

*4. -(�x)-Px 3, QE

*5. (�x)-Mx 2, 4, DS

*6. Px e (�y)(My C Rxy) 1, UI

*7. Px 3, UI

*8. (�y)(My C Rxy) 6, 7, MP

*9. Ma C Ray 8, EI

*10. Ma 9, Simp

*11. -Ma 5, UI

*12. Ma C -Ma 10, 11, Conj

13. -(�x)Px 3-12, IP

QED

8. 1. (�x){Sx C (�y){[By C (�z)(Pz C Wzy)] C Rxy}}

2. (�x){[Bx C (�y)(Py C Wyx)] e Wx} / (�x){Px C (�y)[(By C Wy) C Wxy]}

3. Sa C (�y){[By C (�z)(Pz C Wzy)] C Ray} 1, UI

4. (�y){[By C (�z)(Pz C Wzy)] C Ray} C Sa 3, Com

5. (�y){[By C (�z)(Pz C Wzy)] C Ray} 4, Simp

6. [Bb C (�z)(Pz C Wzb)] C Rab 5, EI

7. Bb C (�z)(Pz C Wzb) 6, Simp

8. Bb 7, Simp

9. (�z)(Pz C Wzb) C Bb 7, Com

10. (�z)(Pz C Wzb) 9, Simp

11. Pc C Wcb 10, EI

12. (�y)(Py C Wyb) 11, EG

13. Bb C (�y)(Py C Wyb) 8, 12, Conj

14. [Bb C (�y)(Py C Wyb)] e Wb 2, UI

15. Wb 14, 13, MP

16. Pc 11, Simp

17. Wcb C Pc 11, Com

18. Wcb 17, Simp

19. Bb C Wb 8, 15, Conj

20. (Bb C Wb) C Wcb 19, 18, Conj

21. (�y)[(By C Wy) C Wcy] 20, EG

22. Pc C (�y)[(By C Wy) C Wcy] 16, 21, Conj

23. (�x){Px C (�y)[(By C Wy) C Wxy]} 22, EG

QED
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9. 1. (�x)[(Sx w Rx) e Px]

2. (�x)[Sx C (�y)(Ry e Gxy)]

3. (�x)(Rx C Rrxe) / (�x)[Px C (�y)(Ry C Gxy)]

4. Sa C (�y)(Ry e Gay) 2, EI

5. Sa 4, Simp

6. Sa w Ra 5, Add

7. (Sa w Ra) e Pa 1, UI

8. Pa 7, 6, MP

9. (�y)(Ry e Gay) C Sa 4, Com

10. (�y)(Ry e Gay) 9, Simp

11. Rb C Rrbe 3, EI

12. Rb 11, Simp

13. Rb e Gab 10, UI

14. Gab 13, 12, MP

15. Rb C Gab 12, 14, Conj

16. (�y)(Ry C Gay) 15, EG

17. Pa C (�y)(Ry C Gay) 8, 16, Conj

18. (�x)[Px C (�y)(Ry C Gxy)] 17, EG 

QED

10. 1. (�x)[(Ex /Qx) w Tx]

2. (�x)(Mx C Px)

3. (�x)(Mx e Ex)

4. (�x)-Qx / (�x)(Tx C Px)

5. Ma C Pa 2, EI

6. Ma 2, Simp

7. Ma e Ea 3, UI

8. Ea 7, 6, MP

9. -Qa 4, UI

*10. -(�x)(Tx C Px) AIP

*11. (�x)-(Tx C Px) 10, QE

*12. -(Ta C Pa) 11, UI

*13. -Ta w -Pa 12, DM

*14. -Pa w -Ta 13, Com

*15. Pa C Ma 5, Com

*16. Pa 15, Simp

*17. --Pa 16, DN

*18. -Ta 14, 17, DS

*19. (Ea / Qa) w Ta 1, UI

*20. Ta w (Ea / Qa) 19, Com

*21. Ea / Qa 20, 18, DS

*22. (Ea e Qa) C (Qa e Ea) 21, Equiv

*23. Ea e Qa 22, Simp

*24. Qa 23, 8, MP

*25. Qa C -Qa 24, 9, Conj

26. --(�x)(Tx C Px) 10-25, IP

27. (�x)(Tx C Px) 26, DN

QED
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Exercises 3.10c

1.  *1. -(�y)[Fy e (�x)Fx] AIP

*2. (�y)-[Fy e (�x)Fx] 1, QE

*3. (�y)-[-Fy w (�x)Fx] 2, Impl

*4. (�y)[--Fy C -(�x)Fx] 3, DM

*5. (�y)[Fy C -(�x)Fx] 4, DM

*6. Fa C -(�x)Fx 5, EI

*7. Fa 6, Simp

*8. -(�x)Fx C Fa 6, Com

*9. -(�x)Fx 8, Simp

*10. (�x)Fx 7, EG

*11. (�x)Fx C -(�x)Fx 10, 9, Conj

12. --(�y)[Fy e (�x)Fx] 1-11 IP

13. (�y)[Fy e (�x)Fx] 12, DN

QED

2. *1. -(�y)[Fy e (�x)Fx] AIP

*2. (�y)-[Fy e (�x)Fx] 1, QE

*3. (�y)-[-Fy w (�x)Fx] 2, Impl

*4. (�y)[--Fy C -(�x)Fx] 3, DM

*5. (�y)[Fy C -(�x)Fx] 4, DN

*6. Fy C -(�x)Fx 5, UI

*7. Fy 6, Simp

*8. (�x)Fx 7, UG

*9. -(�x)Fx C Fy 6, Com

*10. -(�x)Fx 9, Simp

*11. (�x)Fx C -(�x)Fx 8, 10, Conj

12. --(�y)[Fy e (�x)Fx] 1-11, IP

13. (�y)[Fy e (�x)Fx] 12, DN

QED

3. *1. -(�y)[(�x)Fx e Fy] AIP

*2. (�y)-[(�x)Fx e Fy] 1, QE

*3. (�y)-[-(�x)Fx w Fy] 2, Impl

*4. (�y)[--(�x)Fx C -Fy] 3, DM

*5. (�y)[(�x)Fx C -Fy] 4, DN

*6. (�x)Fx C -Fy 5, UI

*7. -Fy C (�x)Fx 6, Com

*8. -Fy 7, Simp

*9. (�x)-Fx 8, UG

*10. -(�x)Fx 9, QE

*11. (�x)Fx 6, Simp

*12. (�x)Fx C -(�x)Fx 11, 10, Conj

13. --(�y)[(�x)Fx e Fy] 1-12, IP

14. (�y)[(�x)Fx e Fy] 13, DN

QED
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4. *1. (�x)(�y)Cxy ACP

* *2. -(�y)(�x)Cxy AIP

* *3. (�y)-(�x)Cxy 2, QE

* *4. (�y)(�x)-Cxy 3, QE

* *5. (�y)Cay 1, EI

* *6. (�x)-Cxb 4, EI

* *7. -Cab 6, UI

* *8. Cab 5, UI

* *9. -Cab C Cab 7, 8 conj

*10. --(�y)(�x)Cxy 2-9 IP

*11. (�y)(�x)Cxy 10, DN

12. (�x)(�y)Cxy e (�y)(�x)Cxy 1-11, CP

QED

5. *1. (�x)(�y)Hxy ACP

* *2. -(�x)(�y)Hxy AIP

* *3. (�x)-(�y)Hxy 2, QE

* *4. (�x)(�y)-Hxy 3, QE

* *5. (�y)Hxy 1, UI

* *6. Hxa 5, EI

* *7. (�y)-Hxy 4, UI

* *8. -Hxa 7, UI

* *9. Hxa C -Hxa 6, 8 conj

*10. --(�x)(�y)Hxy 2-9 IP

*11. (�x)(�y)Hxy 10, DN

12. (�x)(�y)Hxy e (�x)(�y)Hxy 1-11, CP

QED

6. *1. -Fa ACP

* *2. -[(�x)Fx e Ga] AIP

* *3. -[-(�x)Fx w Ga] 2, impl

* *4. --(�x)Fx C -Ga 3, DM

* *5. (�x)Fx C -Ga 4, DN

* *6. (�x)Fx 5, simp

* *7. Fa 6, UI

* *8. -Fa C Fa 1, 7 conj

*9. --[(�x)Fx e Ga] 2-8 IP

*10. (�x)Fx e Ga 9, DN

11. -Fa e [(�x)Fx e Ga] 1-10, CP

12. --Fa w [(�x)Fx e Ga] 11, impl

13. Fa w [(�x)Fx e Ga} 12, DN

QED
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7. *1. -(�x)Ix ACP

*2. (�x)-Ix 1, QE

* *3. -(�x)(Ix e Jx) AIP

* *4. (�x)-(Ix e Jx) 3, QE

* *5. -(Ia e Ja) 4, EI

* *6. -(-Ia w Ja) 5, impl

* *7. --Ia C -Ja 6, DM

* *8. --Ia 7, simp

* *9. Ia 8, DN

* *10. -Ia 3, UI

* *11. Ia C -Ia 9, 10 conj

*12. --(�x)(Ix e Jx) 3-11, IP

*13. (�x)(Ix e Jx) 12, DN

14. -(�x)Ix e (�x)(Ix e Jx) 1-13 CP

15. --(�x)Ix w (�x)(Ix e Jx) 14, impl

16. (�x)Ix w (�x)(Ix e Jx) 15, DN

QED

8. *1. (�x)Dx w (�x)Ex ACP

* *2. -(�x)(Dx w Ex) AIP

* *3. (�x)-(Dx w Ex) 2, QE

* *4. -(Da w Ea) 3, EI

* *5. -Da C -Ea 4, DM

* *6. -Da 5, simp

* *7. (�x)-Dx 6, EG

* *8. -(�x)Dx 7, QE

* *9. (�x)Ex 1, 8, DS

* *10. Ea 9, UI

* *11. -Ea C -Da 5, com

* *12. -Ea 11, simp

* *13. Ea C -Ea 10, 12, conj

*14. --(�x)(Dx w Ex) 2-13 IP

*15. (�x)(Dx w Ex) 14, DN

16. [(�x)Dx w (�x)Ex] e (�x)(Dx w Ex) 1-15 CP

QED
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9. *1. (�x)Ax e Ba ACP

* *2. -(�x)(Ax e Ba) AIP

* *3. (�x)-(Ax e Ba) 2, QE

* *4. -(Ab e Ba) 3, EI

* *5. -(-Ab w Ba) 4, impl

* *6. --Ab C -Ba 5, DM

* *7. Ab C -Ba 6, DN

* *8. Ab 7, simp

* *9. (�x)Ax 8, EG

* *10. Ba 1, 9, MP

* *11. -Ba C Ab 7, com

* *12. -Ba 11, simp

* *13. Ba C -Ba 10, 12, conj

*14. --(�x)(Ax e Ba) 2-13, IP

*15. (�x)(Ax e Bx) 14, DN

16. [(�x)Ax e Ba] e (�x)(Ax e Bx) 1-15, CP

*17. (�x)(Ax e Ba) ACP

* *18. (�x)Ax ACP

* *19. Ab 16, EI

* *20. Ab e Ba 17, UI

* *21. Ba 19, 20 MP

*22. (�x)Ax e Ba 18-21 CP

23. (�x)(Ax e Ba) e [(�x)Ax e Ba] 17-22 CP

24. {[(�x)Ax e Ba] e (�x)(Ax e Bx)} C {(�x)(Ax e Ba) e [(�x)Ax e Ba]} 16, 23, conj

25. [(�x)Ax e Ba] / (�x)(Ax e Bx) 24, equiv

QED
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10. *1. (�x)(Ka C Lx) ACP

* *2. -[Ka C (�x)Lx] AIP

* *3. -Ka w -(�x)Lx 2, DM

* *4. Ka C Lb 1, EI

* *5. Ka 4, simp

* *6. --Ka 5, DN

* *7. -(�x)Lx 3, 6 DS

* *8. (�x)-Lx 7, QE

* *9. -Lb 8, UI

* *10. Lb C Ka 4, com

* *11. Lb 10, simp

* *12. -Lb C Lb 9, 11 conj

*13. --[Ka C (�x)Lx] 2-12 IP

*14. Ka C (�x)Lx 13, DN

15. (�x)(Ka C Lx) e [Ka C (�x)Lx] 1-14 CP

*16. Ka C (�x)Lx ACP

* *17. -(�x)(Ka C Lx) AIP

* *18. (�x)-(Ka C Lx) 17, QE

* *19. -(Ka C Lx) 18, UI

* *20. -Ka w -Lx 19, DM

* *21. Ka 16, simp

* *22. --Ka 21, DN

* *23. -Lx 20, 22 MP

* *24. (�x)-Lx 23, UG

* *25. -(�x)Lx 24, QE

* *26. (�x)Lx C Ka 16, com

* *27. (�x)Lx 26, simp

* *28. -(�x)Lx C (�x)Lx 24, 27 conj

*29. --(�x)(Ka C Lx) 17-28 IP

*30. (�x)(Ka C Lx) 29, DN

31. [Ka C (�x)Lx] e (�x)(Ka C Lx) 16-30 CP

32. {(�x)(Ka C Lx) e [Ka C (�x)Lx]} C {[Ka C (�x)Lx] e (�x)(Ka C Lx)} 15, 31 conj

33. (�x)(Ka C Lx) / [Ka C (�x)Lx] 32, equiv

QED
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Exercises 3.11

1. Sa C Ial C (�x)[(Sx C Ixl C x�a) e Bax]

2. -Icb C (�x)[(Px C x�b) e Icx]

3. (�x)(�y)(Sx C Sy C x�y) 

4. (�x)(�y){(Sx C Sy C x�y) C (�z)[Sz e (z=x w z=y)]}

5. (�x){(Mx C Hx) C (�y)[(My C Hy) e y=x]}

6. (�x)(�y){Mx C Hx C My C Hy C x�y C (�z)[(Mz C Hz) e z=x]}

7. (�x){Vx C (�y)[(Vy e y=x) C x=d]}

8. (�x)(�y)[(Px C Axr C Gxh C Py C Ayr C Gxh) e x=y]

9. (�x)(�y)(�z)[(Px C Axr C Gxh C Py C Ayr C Gyh C Pz C Azr C Gzh) e (x=y w x=z w y=z)]

10. (�x)(�y)(�z)(�w)[(Px C Axr C Gxh C Py C Ayr C Gyh C Pz C Azr C Gzh C Pw C Awr C Gwh) e (x=y w x=z w x=w w

y=z w y=w w z=w)]

11. Tcd C (�x)(Txd e x=c)

12. Tcd C (�x)(Tcx e x=d)

13. (�x)(�y)(Nx C Ixj C Ny C Iyj C x�y)

14. (�x)(�y){Nx C Ixj C Ny C Iyj C x�y C (�z)[(Nz C Izj) e (z=x w z=y)]}

15. (�x)(�y)(�z){Nx C Ixj C Ny C Iyj C Nz C Izj C x�y C x�z C y�z C (�w)[(Nw C Iwj) e (w=x w w=y w w=z)]}

16. (�x)(�y)(�z)[(Cx C Ixm C Cy C Iym C Cz C Izm) e (x=y w x=z w y=z)]

17. (�x)(�y){[Cx C Ixm C Cy C Iym C x�y] C (�z)[(Cz C Izm) e (z=x w z=y)]

18. Sm C Ims C (�x)[(Sx C Ixs C x�m) e Bmx]

19. Sg C (�x)(Ix C Sgx) C (�x){[Sx C (�y)(Iy C Sxy)] e x=g}

20. Pe C -Seg C (�x)[(Px C x�e) e Sxg)]

21. (�x)[Oxg C (�y)(Oyg e y=x) C Rx]

22. (�x)(�y)(�z)(Wx C Sxf C Wy C Syf C Wz C Szf C x�y C x�z C y�z)

23. Wf C (�x)[(Wx C x�f) e Bfx]

24. Wg C Igc C (�x)[(Wx C Ixc C x�g) e Sgx]

25. (�x)(Hx C Lgx) C (�x)[(�y)(Hy C Lxy) e x=g]

26. Ph C -Lhg C (�x)[(Px C x�h) e Lxg]

27. (�x)(�y)(Wx C Exi C Wy C Eyi C x�y)

28. (�x)(�y){Wx C Exi C Wy C Eyi C x�y C (�z)[(Wz C Ezi) e (z=x w z=y)]}

29. (�x){(Sx C Ax) C (�y)[(Sy C Ay) e y=x] C x=n}

30. (�x)(�y)(�z)[(Sx C Fxn C Sy C Fyn C Sz C Fzn) e (x=y w x=z w y=z)]

31. (�x)(�y){{Nx C Ny C (�z){Az C Hxz C (�w)[(Aw C Hmx) C Bzw]} C (�z){Az C Hyz C (�w)[(Aw C Hmx) C

Bzw]}} e x=y}

32. (�x)(�y)(�z){{Nx C Ny C Nz C (�w){Aw C Hxw C (�v)[(Av C Hmv) C Bwv]} C (�w){Aw C Hy C (�v)[(Av C Hmv)

C Bwv]} C (�w){Aw C Hzw C (�v)[(Av C Hmv) C Bwv]}} e (x=y w x=z w y=z)}

33. Tec

34. Be C Ien C (�x)[(Bx C Ixn C x�e) e Tex]

35. Pk C -Hkn C (�x)[(Px C x�k) e Hxn]

36. Pk C -Hkn C Pa C -Han C (�x)[(Px C x�k C x�a) e Hxn]

37. (�x)(�y)(Px C Sxl C Py C Syl C x�y)

38. (�x)(�y)(�z)(Px C Sxl C Py C Syl C Pz C Szl C x�y C x�z C y�z)

39. (�x){(Tx C Sx C Ixp) C (�y)[(Ty C Sy C Iyp) e y=x]}

40. (�x){Lx C (�y)[(Ly e y=x) C Fx]}

41. Fd C (�x)(Ax C Wsxd) C (�y){[Fy C (�z)(Az C Wszy)] e y=d}

42. (�x){(Tx C Sx C Wxa) C (�y)[(Ty C Sy C Wya) e y=x]}

43. Pl C -Wla C (�x)[(Px C x�l) e Wxa]

44. (�x)(�y)(�z)[Sx C (�w)(Bw C Exw) C Sy C (�w)(Bw C Eyw) C Sz C (�w)(Bw C Ezw) C x�y C x�z C y�z]

45. (�x)(�y)(�z){[Sx C (�w)(Tw C Ixw) C Sy C (�w)(Tw C Iyw) C Sz C (�w)(Tw C Ixw)] e (x=y w x=z w y=z)}

46. (�x)[Qx C (�y)(Qy e y=x) C Bx] 

47. We C Ieb C (�x)[(Wx C Ixb C x�e) e Pex]

48. (�x)(�y){Sxe C Sye C x�y C (�z)[Sze e (z=x w z=y)]}

49. (�x)(�y)[(Qx C Ixe C Qy C Iye) e x=y]

50. (�x){Sx e (�y){(Cy C Oyx) C (�z)[(Cz C Ozx) e z=y]}}

51. St C (�x)[(Sx C x�t) e Btx]

52. (�x)(�y)[Sx C Ixl C Sy C Iyl C x�y C (�z)(Pz C Wtz C Rxz C Ryz)]
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53. (�x)[(Sx C Ixl C x�m) e (�y)(Py C Wty C Rxy)]

54. (�x){(�y)[Gy C Rxy C (�z)(Gz C Rjz C Hyz)] e (x=n w x=r)}

55. Bp C -Tpc C (�x)[(Bx C x�p) e Txc]

56. (�x)(�y)(Sx C Ixp C Sy C Iyp C x�y)

57. (�x)(�y)(�z)(Sx C Ixp C Sy C Iyp C Sz � Izp C x�y C x�z C y�z)

58. (�w)(�x)(�y)(�z)[(Pw C Iwp C Px C Ixp C Py C Iyp C Pz C Lzp) e (w=x w w=y w w=z w x=y w x=z w y=z)]

59. Ps C (�x){(Cx C Hsx) C (�y){(Py C y�s) e (�z)[(Cz C Hyz) e Bxz]}}

60. (�x)(�y){Px C Txl C Py C Tyl C x�y C (�z)[(Pz C Tzl) e (z=x w z=y)]}
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Exercises 3.12a

1. 1. Dkm C (�x)(Dkx e x=m)

2. Dab

3. Fb C -Fm / a�k

4. (�x)(Dkx e x=m) C Dkm 1, Com

5. (�x)(Dkx e x=m) 4, Simp

*6. a=k AIP

*7. Dkb 2, 6, IDi

*8. Dkb e b=m 5, UI

*9. b=m 8, 7, MP

*10. Fb 3, Simp

*11. Fm 10, 9, IDi

*12. -Fm C Fb 3, Com

*13. -Fm 12, Simp

*14. Fm C -Fm 11, 13, Conj

15. a�k 6-14, IP

QED

2. 1. (�x)(�y)[(Fx C Fy) e x=y]

2. (�x)(�y)x�y

3. (�y)[(Fa C Fy) e a=y] 1, EI

4. (Fa C Fb) e a=b 3, EI

5. (�y)a�y 2, UI

6. a�b 5, UI

7. -(Fa C Fb) 4, 6 MT

8. -Fa w -Fb 7, DM

9. Fa e -Fb 8, impl

QED

3. 1. (�x)[(�y)Pxy e (�z)Pzx]

2. (�x)(Pxb C x=d)

3. Pab C a=d 2, EI

4. (�y)Pay e (�z)Pza 1, UI

5. Pab 3, simp

6. (�y)Pay 5, EG

7. (�z)Pza 4, 6 MP

8. a=d C Pab 3, Com

9. a=d 8, simp

10. (�z)Pzd 7, 10, IDi

QED

4. 1. (�x)[Jx w (Kx C Lx)]

2. -(Ja w Kb)

*3. a=b AIP

*4. -Ja C -Kb 2, DM

*5. -Ja 4, simp

*6. Ja w (Ka C La) 1, UI

*7. Ka C La 5,6  DS

*8. Ka 7, simp

*9. -Kb C -Ja 4, Com

*10. -Kb 9, Simp

*11. -Ka 10, 3, IDi

*12. Ka C -Ka 8, 11, conj

13. a�b 3-12 IP

QED

5. 1. (�x)[(Mx w Nx) e Ox]
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2. -Oc

3. Md

*4. c=d AIP

*5. (Mc w Nc) e Oc 1, UI

*6. -(Mc w Nc) 2, 5 MT

*7. -Mc C -Nc 6, DM

*8. -Mc 7, simp

*9. -Md 4, 8 IDi

*10. Md C -Md 3, 9 conj

11. c�d 4-10 IP

QED

6. 1. (�x)(Qx e Sx)

2. (�x)(Rx e Tx)

3. (�x)[Qx w (Rx C Ux)]

4. a=b

5. Qa e Sa 1, UI

6. Ra e Ta 2, UI

7. (Qa e Sa) C (Ra e Ta) 5, 6 conj

8. Qa w (Ra C Ua) 3, UI

9. (Qa w Ra) C (Qa w Ua) 8, dist

10. Qa w Ra 9, simp

11. Sa w Ta 7, 10 CD

12. Sb w Ta 4, 11 IDi

QED

7. 1. Fac C Fbc C (�x)[Fxc e (x=a w x=b)]

2. (�x)(Fxc C x�a)

3. Fb C Gb

4. Fdc C d�a 2, EI

5. (�x)[Fxc e (x=a w x=b)] 1, simp

6. Fdc e (d=a w d=b) 5, UI

7. Fdc 4, simp

8. d=a w d=b 6, 7 MP

9. d�a 4, simp

10. d=b 8, 9 DS

11. b=d 10, IDs

12. Fd C Gd 3, 11 IDi

QED

8. 1. (�x)(�y)[Ax e (By e Cxy)]

2. Aa C Ba

3. a=b / Cab

4. (�y)[Aa e (By e Cay)] 1, UI

5. Aa  e (Ba e Caa) 4, UI

6. Aa 2, simp

7. Ba e Caa 5, 6, MP

8. Ba C Aa 2, Com

9. Ba 9, simp

10. Caa 7, 9, MP

11. Cab 10, 3, IDi

QED
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9. 1. (�x)(Mx C Px)

2. (�x)[Mx e (�y)(Ky e x=y)]

3. Kf / Mf C Pf

4. Ma C Pa 1, EI

5. Ma 4, Simp

6. Ma e (�y)(Ky e a=y) 2, UI

7. (�y)(Ky e a=y) 6, 5, MP

8. Kf e a=f 7, UI

9. a=f 8, 3, MP

10. Mf C Pf 4, 9, IDi

QED

10. 1. (�x)[Ax w (Bx C Cx)]

2. -(�x)Bx

3. (�x)(Ax e x=c) / (�x)x=c

4. (�x)-Bx 2, QE

5. -Ba 4, EI

6. -Ba w -Ca 5, Add

7. -(Ba C Ca) 6, DM

8. Aa w (Ba C Ca) 1, UI

9. (Ba C Ca) w Aa 8, Com

10. Aa 9, 7, DS

11. Aa e a=c 3, UI

12. a=c 11, 10, MP

13. (�x)x=c 12, EG

QED

11. 1. Dp C (�x)(Ex C -Fxp)

2. (�x)[Gx e (�y)Fyx] / (�x)(Dx C -Gx)

*3. (�x)(Dx e Gx) AIP

*4. Dp e Gp 3, UI

*5. Dp 1, Simp

*6. Gp 4, 5, MP

*7. Gp e (�y)Fyp 2, UI

*8. (�y)Fyp 7, 6, MP

*9. (�x)(Ex C -Fxp) 1, Simp

*10. Ea C -Fap 9, EI

*11. -Fap C Ea 10, Com

*12. -Fap 11, Simp

*13. Fap 8, UI

*14. Fap C -Fap 13, 12, Conj

15. -(�x)(Dx e Gx) 3-14, IP

16. (�x)-(Dx e Gx) 15, QE

17. (�x)-(-Dx w Gx) 16, Impl

18. (�x)(--Dx C -Gx) 17, DM

19. (�x)(Dx C -Gx) 18, DN

QED
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12. 1. Ha C Ia C (�x)[(Hx C Ix) e x=a]

2. Hb C Jb C (�x)[(Hx C Jx) e x=b] 

3. Ka C -Kb  /-(�x)(Hx C Ix C Jx)

*4. (�x)(Hx C Ix C Jx) AIP

*5. Hc C Ic C Jc 4, EI

*6. (�x)[(Hx C Ix) e x=a] 1, simp

*7. (Hc C Ic) e c=a 6, UI

*8. Hc C Ic 5, simp

*9. c=a 7, 8, MP

*10. (�x)[(Hx C Jx) e x=b] 2, simp

*11. (Hc C Jc) e c=b 10, UI

*12. Hc C Jc 5, simp

*13. c=b 11,12, MP

*14. a=b 13, 9, IDi

*15. Ka 3, Simp

*16. Kb 15, 14, IDi

*17. -Kb 3, Simp

*18. Kb C -Kb 16, 17, Conj

19. -(�x)(Hx C Ix C Jx) 4-18, IP

QED

13. 1. La C Lb C a�b

2. (�x)(�y)(�z)[(Lx C Ly C Lz) e (x=y w y=z w x=z)]

/ (�x)[Lx e (x=a w x=b)]

*3. Lx ACP

*4. (�y)(�z)[(La C Ly C Lz) e (a=y w y=z w a=z)] 2, UI

*5. (�z)[(La C Lb C Lz) e (a=b w b=z w a=z)] 4, UI

*6.  (La C Lb C Lx) e (a=b w b=x w a=x) 5, UI

*7. La C Lb 1, Simp

*8. La C Lb C Lx 7, 3, Conj

*9. a=b w b=x w a=x 6, 8, MP

*10. a�b 1, Simp

*11. b=x w a=x 9, 10, DS

*12. a=x w b=x 11, Com

*13. x=a w x=b 12, IDs

14. Lx e (x=a w x=b) 3-13, CP

15. (�x)[Lx e (x=a w x=b)] 14, UG

QED

14. 1. (�x)(Ecx e x=d)

2. (�x){(Fx C Gx) e (�y)[(Fy C Gy) e y=x]}

3. (�x)(Fx C Gx C Ecx)

4. Fa C Ga / a=d

5. (Fa C Ga) e (�y)[(Fy C Gy) e y=a] 2, UI

6. (�y)[(Fy C Gy) e y=a] 5, 4, MP

7. Fb C Gb C Ecb 3, EI

8. Fb C Gb 7, Simp

9. (Fb C Gb) e b=a 6, UI

10. b=a 9, 8, MP

11. Ecb e b=d 1, UI

12. Ecb 7, Simp

13. b=d 11, 12, MP

14. a=d 13, 10, IDi

QED
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15. 1. (�x)(�y)(Hx C Ix C Jx C Hy C Iy C Jy C x�y)

2. (�x)(�y)[(Hx C Ix C Jx C Hy C Iy C Jy) e x=y]

3. (�y)(Ha C Ia C Ja C Hy C Iy C Jy C a�y) 1, EI

4. Ha C Ia C Ja C Hb C Ib C Jb C a�b 3, EI

*5. -(�z)[(Hz C Iz C Jz) e (z=a w z=b)] AIP

*6. (�z)-[(Hz C Iz C Jz) e (z=a w z=b)] 5, QE

*7. -[(Hc C Ic C Jc) e (c=a w c=b)] 6, EI

*8. -[-(Hc C Ic C Jc) w (c=a w c=b)] 7, impl

*9. --(Hc C Ic C Jc) C -(c=a w c=b) 8, DM

*10. (Hc C Ic C Jc) C -(c=a w c=b) 9, DN

*11. Hc C Ic C Jc C c�a C c�b 10, DM

*12. (�y)[(Ha C Ia C Ja C Hy C Iy C Jy) e a=y] 2, UI

*13. (Ha C Ia C Ja C Hc C Ic C Jc) e a=c 12, UI

*14. Ha C Ia C Ja 4, simp

*15. Hc C Ic C Jc 11, simp

*16.  Ha C Ia C Ja C Hc C Ic C Jc 14, 15 conj

*17. a=c 13, 16 MP

*18. c=a 17, IDs

*19. c�a 11, simp

*20. c=a C c�a 18, 19 conj

21. --(�z)[(Hz C Iz C Jz) e (z=a w z=b)] 5-20 IP

22. (�z)[(Hz C Iz C Jz) e (z=a w z=b)] 21, DN

23. Ha C Ia C Ja C Hb C Ib C Jb C a�b C (�z)[(Hz C Iz C Jz) e (z=a w z=b)] 4, 22 conj

24. (�y){Ha C Ia C Ja C Hy C Iy C Jy C a�y C (�z)[(Hz C Iz C Jz) e (z=a w z=y)]} 23, EG

25. (�x)(�y){Hx C Ix C Jx C Hy C Iy C Jy C x�y C (�z)[(Hz C Iz C Jz) e (z=x w z=y)]} 24, EG

QED
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16. 1. Na C Oa C Nb C Ob C a�b C (�x)[(Nx C Ox) e (x=a w x=b)]

2. Na C -Pa C (�x)[(Nx C x�a) e Px] / (�x){Nx C Ox C Px C (�y)[(Ny C Oy C Py) e y=x]}

*3. -(�y)[(Ny C Oy C Py) e y=b] AIP

*4. (�y)-[(Ny C Oy C Py) e y=b] 3, QE

*5. -[(Nc  C Oc C Pc) e c=b] 4, EI

*6. -[-(Nc C Oc C Pc) w c=b] 5, impl

*7. --(Nc C Oc C Pc) C c�b 6, DM

*8. Nc C Oc C Pc C c�b 7, DN

*9. (�x)[(Nx C Ox) e (x=a w x=b)] 1, simp

*10. (Nc C Oc) e (c=a w c=b) 9, UI

*11. Nc C Oc 8, simp

*12. c=a w c=b 10, 11, MP

*13. c�b 8, simp

*14. c=a 12, 13, DS

*15. -Pa 2, simp

*16. a=c 14, IDs

*17. -Pc 15, 16, IDi

*18. Pc 8, simp

*19. Pc C -Pc 18, 17, conj

20. --(�y)[(Ny C Oy C Py) e y=b] 3-19, IP

21. (�y)[(Ny C Oy C Py) e y=b] 20, DN

22. (�x)[(Nx C x�a) e Px] 2, simp

23. (Nb C b�a) e Pb 22, UI

24. Nb 1, simp

25. a�b 1, Simp

26. b�a 25, IDs

27. Nb C b�a 24, 26, conj

28. Pb 23, 27, MP

29. Nb C Ob 1, simp

30. Nb C Ob C Pb 29, 28, conj

31. Nb C Ob C Pb C (�y)[(Ny C Oy C Py) e y=b] 30, 22, Conj

32. (�x){Nx C Ox C Px C (�y)[(Ny C Oy C Py) e y=x]} 31, EG

QED
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17. 1. (�x)(�y)(Kx C Lx C Ky C Ly C x�y)

2. Ka C La C Ma C (�y)[(Ky C Ly C My) e y=a]

*3. -(�x)(Kx C Lx C -Mx) AIP

*4. (�x)-(Kx C Lx C -Mx) 3, QE

*5. (�y)(Kb C Lb C Ky C Ly C b�y) 1, EI

*6. Kb C Lb C Kc C Lc C b�c 5, EI

*7. (�y)[(Ky C Ly C My) e y=a] 2, simp

*8. (Kb C Lb C Mb) e b=a 7, UI

*9. -(Kb C Lb C -Mb) 4, UI

*10. -Kb w -Lb w --Mb 9, DM

*11. -Kb w -Lb w Mb 10, DN

*12. Kb 6, simp

*13. --Kb 12, DN

*14. -Lb w Mb 11, 13 DS

*15. Lb 6, simp

*16. --Lb 15, DN

*17. Mb 14, 16 DS

*18. Kb C Lb C Mb 12, 15, 17 conj

*19. b=a 8, 18 MP

*20. (Kc C Lc C Mc) e c=a 7, UI

*21. -(Kc C Lc C -Mc) 4, UI

*22. -Kc w -Lc w --Mc 21, DM

*23. -Kc w -Lc w Mc 22, DN

*24. Kc 6, simp

*25. --Kc 24, DN

*26. -Lc w Mc 23, 25 DS

*27. Lc 6, simp

*28. --Lc 27, DN

*29. Mc 26, 28 DS

*30. Kc C Lc C Mc 24, 27, 29 conj

*31. c=a 20, 30 MP

*32. a=c 31, IDs

*33. b=c 19, 32 IDi

*34. b�c 6, simp

*35. b=c C b�c 33, 34 conj

36. --(�x)(Kx C Lx C -Mx) 3-35 IP

37. (�x)(Kx C Lx C -Mx) 26, DN

QED
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18. 1. (�x)(�y)(Ax C Cx C Ay C Cy C x�y)

2. (�x)(�y)(�z)[(Cx C Cy C Cz) e (x=y w x=z w y=z)]

3. (�x)(Bx C -Ax) / -(�x)(Bx e Cx)

4. (�y)(Aa C Ca C Ay C Cy C a�y) 1, EI

5. Aa C Ca C Ab C Cb C a�b 4, EI

6. Bc C -Ac 3, EI

*7. (�x)(Bx e Cx) AIP

*8. Bc e Cc 7, UI

*9. Bc 6, Simp

*10. Cc 8, 9, MP

*11. Ca 5, Simp

*12. Cb 5, Simp

*13. Ca C Cb 11, 12, Conj

*14. Ca C Cb C Cc 13, 10, Conj

*15. (�y)(�z)[(Ca C Cy C Cz) e (a=y w a=z w y=z)] 2, UI

*16. (�z)[(Ca C Cb C Cz) e (a=b w a=z w b=z)] 15, UI

*17. (Ca C Cb C Cc) e (a=b w a=c w b=c) 16, UI

     *18. a=b w a=c w b=c 17, 14, MP

*19. a�b 5, simp

*20. a=c w b=c 18, 19, DS

* *21. a=c AIP

* *22. Aa 5, simp

* *23. Ac 22, 21, IDi

* *24. -Ac 6, simp

* *25. Ac C -Ac 23, 24 conj

*26. a�c 21-25, IP

*27. b=c 20, 26, DS

*28. Ab 5, simp

*29. Ac 28, 27, IDi

*30. -Ac 6, simp

*31. Ac C -Ac 29, 30, conj

32. -(�x)(Bx e Cx) 7-31, IP

QED
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19. 1. (�x)(�y)(Qx C Rx C Qy C Ry C x�y)

2. (�x)(�y)(�z)[(Rx C Sx C Ry C Sy C Rz C Sz) e (x=y w x=z w y=z)]

3. (�x)(-Qx w Sx)

4. (�y)(Qa C Ra C Qy C Ry C a�y) 1, EI

5. Qa C Ra C Qb C Rb C a�b 4, EI

6. -Qa w Sa 3, UI

7. Qa 5, simp

8. --Qa 7, DN

9. Sa 6, 8 DS

10. -Qb w Sb 3, UI

11. Qb 5, simp

12. --Qb 11, DN

13. Sb 10, 12 DS

14. Qa C Ra C Sa C Qb C Rb C Sb C a�b 5, 9, 13 conj

*15. -(�z)[(Rz C Sz) e (z=a w z=b)] AIP

*16. (�z)-[(Rz C Sz) e (z=a w z=b)] 15, QE

*17. -[(Rc C Sc) e (c=a w c=b)] 16, EI

*18. -[-(Rc C Sc) w (c=a w c=b)] 17, impl

*19. --(Rc C Sc) C -(c=a w c=b) 18, DM

*20. Rc C Sc C -(c=a w c=b) 19, DN

*21. Rc C Sc C c�a C c�b 20, DM

*22. (�y)(�z)[(Ra C Sa C Ry C Sy C Rz C Sz) e (a=y w a=z w y=z)] 2, UI

*23. (�z)[(Ra C Sa C Rb C Sb C Rz C Sz) e (a=b w a=z w b=z)] 22, UI

*24. (Ra C Sa C Rb C Sb C Rc C Sc) e (a=b w a=c w b=c) 23, UI

*25. Rc C Sc 21, simp

*26. Ra C Sa C Rb C Sb 14, simp

*27. Ra C Sa C Rb C Sb C Rc C Sc 25, 26 conj

*28. a=b w a=c w b=c 24, 27 MP

*29. c�a 21, simp

*30. a�c 29, IDs

*31. a=b w b=c 28, 30 DS

*32. c�b 21, simp

*33. b�c 32, IDs

*34. a=b 31, 34 DS

*35. a�b 5, simp

*36. a=b C a�b 34, 35 conj

37. --(�z)[(Rz C Sz) e (z=a w z=b)] 15-36 IP

38. (�z)[(Rz C Sz) e (z=a w z=b)] 37, DN

39. Qa C Ra C Sa C Qb C Rb C Sb C a�b C (�z)[(Rz C Sz) e (z=a w z=b)] 14, 38 conj

40. (�y){Qa C Ra C Sa C Qy C Ry C Sy C a�y C (�z)[(Rz C Sz) e (z=a w z=y)]} 39, EG

41. (�x)(�y){Qx C Rx C Sx C Qy C Ry C Sy C x�y C (�z)[(Rz C Sz) e (z=xw z=y)]} 40, EG

QED
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20. 1. Ma C -Pa C Mb C -Pb C (�x)[(Mx C x�a C x�b) e Px]

2. Qb C (�x)[(Mx C Qx) e x=b]

3. (�x){Mx e [-(Qx w Px) / Rx]}

4. a�b / (�x){Mx C Rx C (�y)[(My C Ry) e y=x]}

5. Ma e [-(Qa w Pa) / Ra] 3, UI

6. Ma 1, simp

7. -(Qa w Pa) / Ra 5, 6 MP

8. [-(Qa w Pa) e Ra] C [Ra e -(Qa w Pa)] 7, equiv

9. -(Qa w Pa) e Ra 8, simp

10. (�x)[(Mx C Qx) e x=b] 2, simp

11. (Ma C Qa) e a=b 10, UI

12. -(Ma C Qa) 4, 11 MT

13. -Ma w -Qa 12, DM

14. --Ma 6, DN

15. -Qa 13, 14 DS

16. -Pa 1, simp

17. -Qa C -Pa 15, 16 conj

18. -(Qa w Pa) 17, DM

19. Ra 9, 18 MP

20. Ma C Ra 6, 19 conj

*21. -(�y)[(My C Ry) e y=a] AIP

*22. (�y)-[(My C Ry) e y=a] 21, QE

*23. -[(Mc C Rc) e c=a] 22, EI

*24. -[-(Mc C Rc) w c=a] 23, impl

*25. --(Mc C Rc) C c�a 24, DM

*26. Mc C Rc C c�a 25, DN

*27. Mc e [-(Qc w Pc) / Rc] 3, UI

*28. Mc 26, simp

*29. -(Qc w Pc) / Rc 27, 28 MP

*30. [-(Qc w Pc) e Rc] C [Rc e -(Qc w Pc)] 29, equiv

*31. Rc e -(Qc w Pc) 30, simp

*32. Rc 26, simp

*33. -(Qc w Pc) 31, 32 MP

*34. -Qc C -Pc 33, DM

*35. (�x)[(Mx C x�a C x�b) e Px] 1, simp

*36. (Mc C c�a C c�b) e Pc 35, UI

*37. -Pc 34, simp

*38. -(Mc C c�a C c�b) 36, 37 MT

*39. -Mc w -c�a w -c�b 38, DM

*40. -Mc w c=a w -c�b 39, DM

*41. -Mc w c=a w c=b 40, DN

*42. --Mc 28, DN

*43. c=a w c=b 41, 42 DS

*44. c�a 26, simp

*45. c=b 43, 44 DS

*46. Qb 2, simp

*47. b=c 45, IDs

*48. Qc 46, 47 IDi

*49. -Qc 34, simp

*50. Qc C -Qc 48, 49 conj

51. --(�y)[(My C Ry) e y=a] 21-50 IP

52. (�y)[(My C Ry) e y=a] 51, DN

53. Ma C Ra C (�y)[(My C Ry) e y=a] 20, 52 conj

54. (�x){Mx C Rx C (�y)[(My C Ry) e y=x]} 53, EG

QED
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Exercises 3.12b

1. 1. Fp

2. -Fo / p�o

*3. p=o AIP

*4. Fo 1, 3, IDi

*5. -Fo C Fo 4, 2, conj

6. p�o 3-5, IP

QED

2. 1. g=m e Mmw

2. m=g

3. w=h / Mgh

4. g=m 1, IDs

5. Mmw 1, 4, MP

6. Mgw 5, 2, Idi

7. Mgh 6, 3, IDi

QED

3. 1. (�x)-Sx e (�x)x�w / Sw

*2. -Sw AIP

*3. (�x)-Sx 2, EG

*4. (�x)x�w 1, 3, MP

*5. w�w 4, UI

*6. w=w IDr

*7. w=w C w�w 6, 5, conj

8. --Sw 2-7, IP

9. Sw 8, DN

QED

4. 1. Rk C Tk C (�x)[(Rx C Tx C x�k) e Fkx]

2. Rp C Tp

3. k�p / Fkp

4. (�x)[(Rx C Tx C x�k) e Fkx] 1, simp

5. (Rp C Tp C p�k) e Fkp 4, UI

6. p�k 3, IDs

7. Rp C Tp C p�k 2, 6, conj

8. Fkp 5, 7, MP

QED

5. 1. Pr C Cr C Trm C (�x)[(Tx C Cx C Txm) e x=r]

2. (�x)[(Ex C Px) e Wx]

3. (�x)[(Px C Cx) e Ex] Wr

4. Pr C Cr 1, Simp

5. (Pr C Cr) e Er 3, UI

6. Er 5, 4, MP

7. Pr 4, Simp

8. Er C Pr 6, 7, Conj

9. (Er C Pr) e Wr 2, UI

10. Wr 9, 8, MP

QED
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6. 1. (�x)[Wxr C (�y)(Wyr e y=x) C Gx C Px]

2. Pl C -Gl / -Wlr

*3. Wlr AIP

*4. War C (�y)(Wyr e y=a) C Ga C Pa 1, EI

*5. (�y)(Wyr e y=a) 4, simp

*6. Wlr e l=a 5, UI

*7. l=a 3, 6, MP

*8. Ga 4, simp

*9. Gl 7, 8, IDi

*10. -Gl 2, simp

*11. Gl C -Gl 9, 10, conj

12. -Wlr 3-11, IP

QED

7. 1. Pj C Sj C (�y)[(Py C Sy) e y=j]

2. Pb C Cb C (�y)[(Py C Cy) e y=b]

3. (�x)(Px C Sx C Cx) / j=b

4. Pa C Sa C Ca 3, EI

5. (�y)[(Py C Sy) e y=j] 1, simp

6. (Pa C Sa) e a=j 5, UI

7. Pa C Sa 4, simp

8. a=j 6, 7, MP

9. (�y)[(Py C Cy) e y=b] 2, simp

10. (Pa C Ca) e a=b 9, UI

11. Pa C Ca 4, simp

12. a=b 10, 11, MP

13. j=b 12, 8, IDi

QED

8. 1. Sp C -Wp C (�x)[(Sx C x�p) e Wx]

2. Sr C -Gr C (�x)[Sx C x�r) e Gx]

3. p�r / Gp C Wr

4. (�x)[(Sx C x�p) e Wx] 1, simp

5. (Sr C r�p) e Wr 4, UI

6. r�p 3, IDs

7. Sr 2, simp

8. Sr C r�p 6, 7, conj

9. Wr 5, 8, MP

10. (�x)[Sx C x�r) e Gx] 2, simp

11. (Sp C p�r) e Gp 10, UI

12. Sp 1, simp

13. Sp C p�r 3, 12, conj

14. Gp 11, 13 MP

15. Gp C Wr 9, 14, conj

QED
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9. 1. (�x){Sx C Gxs C (�y)[(Sy C Gys) e y=x]}

2. (�x)(�y)(Sx C Sy  Gxl C Gyl C x�y)

3. -(�x)(Sx C Gxs C Gxl) / (�x)(�y)(�z)(Sx C Sy C Sz C x�y C x�z C y�z)

4. Sa C Gas C (�y)[(Sy C Gys) e y=a) 1, EI

5. (�y)(Sb C Sy  Gbl C Gyl C b�y) 2, EI

6. Sb C Sc C Gbl C Gcl C b�c 5, EI

7. (�x)-(Sx C Gxs C Gxl) 3, QE

8. (�x)[-(Sx C Gxs) w -Gxl] 7, DM

9. (�x)[(Sx C Gxs) e -Gxl] 8, Impl

10. (Sa C Gas) e -Gal 9, UI

11. Sa C Gas 4, Simp

12. -Gal 10, 11, MP

    *13. a=b AIP

*14. -Gbl  12, 13, IDi

*15. Gbl 6, Simp

*16. Gbl C -Gbl 15, 14, Conj

17. a�b 13-16, IP

 *18. a=c AIP

*19. -Gcl 12, 18, IDi

*20. Gcl 6, Simp

*21. Gcl C -Gcl 20, 19, Conj

22. a�c 18-21, IP

23. Sa 4, Simp

24. Sb C Sc 6, Simp

25. Sa C Sb C Sc 23, 24, Conj

26. Sa C Sb C Sc C a�b 25, 17, Conj

27. Sa C Sb C Sc C a�b C a�c 26, 22, Conj

28. b�c 6, Simp

29. Sa C Sb C Sc C a�b C a�c C b�c 27, 28, Conj

30. (�z)(Sa C Sb C Sz C a�b C a�z C b�z) 29, EG

31. (�y)(�z)(Sa C Sy C Sz C a�y C a�z C y�z) 30, EG

32. (�x)(�y)(�z)(Sx C Sy C Sz C x�y C x�z C y�z) 31, EG

QED
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10. 1. Er C -Pr C (�x)[(Ex C x�r) e Px]

2. Ej C Pj C (�x)[(Ex C Px) e x=j] / (�x)(�y){(Ex C Ey C x�y) C (�z)[Ez e (z=x w z=y)]}

3. Er 1, simp

4. Ej 2, simp

*5. -(�z)[Ez e (z=r w z=j)] AIP

*6. (�z)-[Ez e (z=r w z=j)] 5, QE

*7. -[Ea e (a=r w a=j)] 6, EI

*8. -[-Ea w a=r w a=j] 7, impl

*9. --Ea C a�r C a�j 8, DM

*10. Ea C a�r C a�j 9, DN

*11. (�x)[(Ex C x�r) e Px] 1, simp

*12. (Ea C a�r) e Pa 11, UI

*13. Ea C a�r 10, simp

*14. Pa 12, 13, MP

*15. (�x)[(Ex C Px) e x=j] 2, simp

*16. (Ea C Pa) e a=j 15, UI

*17. Ea 14, simp

*18. Ea C Pa 14, 17, conj

*19. a=j 16, 18, MP

*20. a�j 10, simp

*21. a=j C a�j 19, 20, Conj

22. --(�z)[Ez e (z=r w z=j)] 5-21, IP

23. (�z)[Ez e (z=r w z=j)] 22, DN

*24. r=j AIP

 *25. -Pr 1, Simp

*26. -Pj 25, 24, IDi

*27. Pj 2, Simp

*28. Pj C -Pj 27, 26, Conj

29. r�j 24-28, IP

30. Er C Ej 3, 4, Conj

31. Er C Ej C r�j 30, 29, Conj

32. Er C Ej C r�j C (�z)[Ez e (z=r w z=j)] 31, 23, Conj

33. (�y){Er C Ey C r�y C (�z)[Ez e (z=r w z=y)]} 32, EG

34. (�x)(�y){(Ex C Ey C x�y) C (�z)[Ez e (z=x w z=y)]} 33, EG

QED 
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Exercises 3.13a

1. Tmf(m)

2. Tf(g(m))m

3. Tmf(f(m)) C Tmf(g(m))

4. (�x)[Sxm C Txg(f(m)) C Txg(g(m))]

5. (�x)[Sxm C (�y)(Sym e y=x) C Txg(f(m)) C Txg(g(m))]

6. (�x)-x=f(x)

7. -(�x)[Px e (�y)x=g(y)]

8. (�x)[Px C (�y)Sf(f(y))x]

9. Nt C Pt C Ng(t) C Pg(t)

10. -(�x)[(Ox C Nx) e Px]

11. (�x)[(Nx C Ox) e Of(x)]

12. (�x)[Nx e -Pf(x)]

13. (�x)(�y)[(Nx C Ex C Ny C Ey) e Ef(x, y)]

14. (�x)(�y)[Nx e -Pf(x,g(x))]

15. (�x)(�y)[(Nx C Ex C Ny C Oy) e Ef(x, y)]

16. (�x){Nx e [f(x,x) e f(x)]}

Exercises 3.13b

1. 1. (�x)(Ax e Af(x)

2. Aa

3. f(a)=b / Ab

4. Aa e Af(a) 1, UI

5. Af(a) 4, 2, MP

6. Ab 5, 3, IDi

QED

2. 1. (�x)Bx / Bg(x)

2. (�x)g(x)=f(x,x)

3. Ba / Bf(a,a)

4. Ba / Bg(a) 1, UI

5. [Ba e Bg(a)] C [Bg(a) e Ba] 4, Equiv

6. Ba e Bg(a) 5, Simp

7. Bg(a) 6, 3, MP

8. g(a)=f(a,a) 2, UI

9. Bf(a,a) 7, 8, IDi

QED

3. 1. (�x)Hf(x)

2. a=f(b) C b=f(c)

3. (�x)(Hx e -Ix) / a=f(f(c)) C -Ia

4. a=f(b) 2, Simp

5. b=f(c) 2, Simp

6. a=f(f(c)) 4, 5, IDi

7. Hf(b) 1, UI

8. f(b)=a 4, IDs

9. Ha 7, 8, IDi

10. Ha e -Ia 3, UI

11. -Ia 10, 9, MP

12. a=f(f(c)) C -Ia 6, 11, Conj

QED
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4. 1. (�x)[(Bf(x) e (Cx C Df(f(x)))]

2. (�x)Bf(f(x))

3. (�x)Cf(x) e (�x)Ex / (�x)[Df(f(f(x))) C Ef(f(f(x)))]

4. Bf(f(a)) 2, EI

5. B(f(f(a)) e [Cf(a) C Df(f(f(a)))] 1, UI

6. Cf(a) C Df(f(f(a))) 5, 4, MP

7. Cf(a) 6, Simp

8. (�x)Cf(x) 7, EG

9. (�x)Ex 3, 8, MP

10. Ef(f(f(a))) 9, UI

11. Df(f(f(a))) 6, Simp

12. Df(f(f(a))) C Ef(f(f(a))) 11, 10, Conj

QED

5. 1. (�x)(�y)[(Fx C Fy) e Gf(x,y)]

2. (�x)(�y)[Gf(x,y) / Gf(x,x)]

3. (�x)[Gx e Gf(x)]

4. Fa C Fb / Gf(f(a,a))

5. (�y)(Fa C Fy) e Gf(a,y) 1, UI

6. (Fa C Fb) e Gf(a,b) 5, UI

7. Gf(a,b) 6, 4, MP

8. (�y)[Gf(a,y) / Gf(a,a)] 2, UI

9. Gf(a,b) / Gf(a,a) 8, UI

10. [Gf(a,b) e Gf(a,a)] C [Gf(a,a) e Gf(a,b)] 9, Equiv

11. Gf(a,b) e Gf(a,a) 10, Simp

12. Gf(a,a) 11, 7, MP

13. Gf(a,a) e Gf(f(a,a)) 3, UI

14. Gf(f(a,a)) 13, 12, MP

QED

6. 1. f(a,b,c)=d

2. (�x)(�y)(�z)(�w){f(x,y,z)=w e [Jw w Jf(w)]}

3. (�x)(Jx e Kx) / Kd w Kf(d)

4. (�y)(�z)(�w){f(a,y,z)=w e [Jw w Jf(w)] 2, UI

5. (�z)(�w){f(a,b,z)=w e [Jw w Jf(w)] 4, UI

6. (�w){f(a,b,c)=w e [Jw w Jf(w)] 5, UI

7. f(a,b,c)=d e [Jd w Jf(d)] 6, UI

8. Jd w Jf(d) 7, 1, MP

9. Jd e Kd 3, UI

10. Jf(d) e Kf(d) 3, UI

11. (Jd e Kd) C (Jf(d) e Kf(d)) 9, 10, Conj

12. Kd w Kf(d) 11, 8, CD

QED
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7. 1. (�x)[(Px C Qx) e Rf(x)]

2. (�x)[Rx e (�y)Pxy]

3. -(�x)(Px e -Qx) / (�x)(�y)Pxy

4. (�x)-(Px e -Qx) 3, QE

5. (�x)-(-Px w -Qx) 4, Impl

6. (�x)(--Px C --Qx) 5, DM

7. (�x)(Px C Qx) 6, DN

8. Pa C Qa 7, EI

9. (Pa C Qa) e Rf(a) 1, UI

10. Rf(a) 9, 8, MP

11. Rf(a) e (�y)Pf(a)y 2, UI

12. (�y)Pf(a)y 11, 10, MP

13. (�x)(�y)Pxy 12, EG

QED

8. 1. (�x)(�y)[(Pxy C Qxy) e -f(x)=y]

2. (�x)(�y)[Qxy / Qxf(y)]

3. f(a)=b C f(b)=a

4. Pab / -Qaa

5. f(a)=b 3, Simp

6. (�y)[(Pay C Qay) e -f(a)=y] 1, UI

7. (Pab C Qab) e -f(a)=b 6, UI

8. --f(a)=b 5, DN

9. -(Pab C Qab) 7, 8, MT

10. -Pab w -Qab 9, DM

11. --Pab 4, DN

12. -Qab 10, 11, DS

13. (�y)[Qay / Qaf(y)] 2, UI

14. Qab / Qaf(b) 13, UI

15. [Qab e Qaf(b)] C [Qaf(b) e Qab] 14, Equiv

16. Qaf(b) e Qab 15, Simp

17. -Qaf(b) 16, 12, MT

18. f(b)=a 3, Simp

19. -Qaa 17, 18, IDi

QED

9. 1. (�x)(�y){Qf(x,y) e [(Px C Qy) w (Py C Qx)]}

2. (�x)[Px e Qf(x)]

3. (�x)Qf(x,f(x))

4. -Pa / Qa C Pf(a)

5. Qf(a,f(a)) 3, UI

6. (�y){Qf(a,y) e [(Pa C Qy) w (Py C Qa)]} 1, UI

7. Qf(a,f(a)) e [(Pa C Qf(a)) w (Pf(a) C Qa)] 6, UI

8. (Pa C Qf(a)) w (Pf(a) C Qa) 7, 5, MP

9. -Pa w -Qf(a) 4, Add

10. -(Pa C Qf(a)) 9, DM

11. Pf(a) C Qa 8, 10, DS

12. Qa C Pf(a) 11, Com

QED
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10. 1. (�x)(�y){Pf(x,y) e [(Px C Py) w (Qx C Qy)]}

2. (�x)[Px e Pf(f(x)]

3. (�x)Pf(x, f(f(x)))

4. (�x)-Qx / (�x)Pf(f(x))

5. -Qa 4, EI

6. Pf(a,f(f(a))) 3, UI

7. (�y){Pf(a,y) e [(Pa C Py) w (Qa C Qy)]} 1, UI

8. Pf(a,f(f(a))) e [(Pa C Pf(f(a))) w (Qa C Qf(f(a)))] 7, UI

9. (Pa C Pf(f(a))) w (Qa C Qf(f(a))) 8, 6, MP

10. -Qa w -Qf(f(a)) 5, Add

11. -(Qa C Qf(f(a))) 10, DM

12. (Qa C Qf(f(a))) w (Pa C Pf(f(a))) 9, Com

13. Pa C Pf(f(a)) 12, 11, DS

14. Pf(f(a)) 13, Simp

15. (�x)Pf(f(x)) 14, EG

QED

Exercises 3.14

1. (�X)Xl C (�X)-Xl

2. (�X)(Xc / -Xd)

3. (�X)(�Y)[Xr C Yr C (�x)-(Xx/Yx)]

4. (�x)[Px e (�X)(Xt C Xx)]

5. (�x)[Px e (�X)(�y)(My C Xx C Xy)]

6. (�x)[Cx C (�X)(Xx C Xe)]

7. (�x)[(Fx C Sx) C (�X)(Xg C Xx)]

8. (�x){Px e (�y)[By e (�X)(Xx C Xy)]}

9. (�X)(Xa C Xf(a))

10. (�X)(Xg(r) e Xr)

11. (�X)(�x)-Xx

12. (�X){(�x)(�y)(�z)[(Xxy C Xyz) e Xxz]}

13. (�z)(�X)[(�x)(�y)(Xxy / Xyx) e (�w)(-Xzw C -Xwz)]

14. (�X)[(�x)Xxx C (�x)(�y)(Xxy / Xyx)]

15. (�w)(�X){(�x)(�y)(�z)[(Xxy C Xyz) e Xxz] e (�v)(-Xwv C -Xvw)}

16. (�x)(�y){[Sx C Sy C -(�X)(Xx / Xy)] e -(�X)(Xx C Xy)}

17. (�x)(�y)[x�y e (�X)(Xx / -Xy)]

18. (�x)(�y){[Sx C Ux C Sy C Uy C (�X)(Xx C Xy)] e x=y}

19. (�x)(�y)[-(�X)(Xx C Xy) e (-x=f(y) C -y=f(x))]

20. (�x)(�y)[-(�X)(Xx C Xy) e (-Uxy C -Uyx)]
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